Skip to main content
Log in

Intercrystalline structure distribution in alloy 304 stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The intercrystalline structure distribution function (ISDF) describes the probability density for the occurrence of grain boundaries in the polycrystalline medium with five specified geometrical parameters: three describing intercrystalline lattice misorientation and two describing the orientation of the grain boundary plane. This paper extends the ISDF analysis to Bunge’s formalism which represents the distribution in terms of a series expansion of symmetric generalized spherical harmonics. An exemplary calculation of the ISDF is illustrated for alloy 304 stainless steel tubing. The results confirm the observation that gS3 and gS9 boundaries, arising from twinning, are prevalent in the structure. The distribution of twinning boundaries and other special boundaries is represented by Euler plots in the five geometrical parameters defining boundary structure. One remarkable feature of this material is a nearly isotropic distribution of boundary misorientation in the two parameters defining the boundary plane orientation. These results are compared with other published experimental data and theoretical calculations for the distribution of special boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Adams:Metall. Trans. A, 1986, vol. 17A, pp. 2199–2207.

    CAS  Google Scholar 

  2. J.E. Hilliard:Trans. AIME, 1962, vol. 224, pp. 1201–11.

    Google Scholar 

  3. E. M. Philofsky and J.E. Hilliard:Quart. Appl. Math., 1969, vol. 27, pp. 79–85.

    Google Scholar 

  4. H. J. Bunge:Texture Analysis in Materials Science, Butterworth’s, London, 1982.

    Google Scholar 

  5. R. J. Roe:J. Appl. Phys., 1965, vol. 36, pp. 2024–31.

    Article  CAS  Google Scholar 

  6. R. J. Roe:J. Appl. Phys., 1966, vol. 37, pp. 2069–72.

    Article  CAS  Google Scholar 

  7. C.T. Young, J.H. Steele, Jr., and J.L. Lytton:Metall. Trans., 1973, vol. 4, pp. 2081–89.

    Article  CAS  Google Scholar 

  8. P. Heilmann, W. A. T. Clark, and D. A. Rigney:Ultramicroscopy, 1982, vol. 9, pp. 365–72.

    Article  CAS  Google Scholar 

  9. R. L. Burden, J. D. Faires, and A. C. Reynolds:Numerical Analysis, 2nd ed., Prindle, Weber & Schmidt, Boston, 1981, pp. 291–93.

    Google Scholar 

  10. D.G. Brandon:Acta Metall., 1966, vol. 14, p. 1479.

    Article  CAS  Google Scholar 

  11. J. Don and S. Majumdar:Acta Metall., 1986, vol. 34, no. 5, pp. 961–67.

    Article  CAS  Google Scholar 

  12. J. Zhao and B.L. Adams:Proc. Int. Conf. Fatigue, Corrosion Cracking, Fracture Mechanics, and Failure Analysis: The Mecha- nism of Fracture, V. S. Goel, ed., ASM, Metals Park, OH, 1986, p. 597–603.

    Google Scholar 

  13. R. Maurer and H. Gleiter:Scripta Metall., 1979, vol. 13, p. 61.

    Article  Google Scholar 

  14. D. H. Warrington and M. Boon:Acta Metall., May 1975, vol. 23, pp. 599–606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Koontz, J.S. & Adams, B.L. Intercrystalline structure distribution in alloy 304 stainless steel. Metall Trans A 19, 1179–1185 (1988). https://doi.org/10.1007/BF02662578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662578

Keywords

Navigation