Skip to main content
Log in

T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The hypervirulent Agrobacterium tumefaciens strain A281 formed frequent tumors (31%) on Picea abies (Norway spruce), an economically important tree species in Swedish forests. Three-month-old seedlings were inoculated and tumors were established that grew hormone-independently in culture. Tumors contained agropine and mannopine/mannopinic acid as determined by acid pH paper electrophoresis. In addition, DNA hybridization studies showed that the DNA from these tumor lines contained sequences homologous to Ti plasmid T-DNA, whereas wild-type spruce seedling DNA did not. These results suggest that Agrobacterium vectors can be used for gene transfer into this important forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bevan M, Chilton M-D: T-DNA of the Agrobacterium Ti and Ri plasmids. Ann Rev Genet 16: 357–384 (1982).

    Article  PubMed  Google Scholar 

  2. Bornman CH: Possibilities and constraints in the regeneration of trees from cotyledonary needles of Picea abies in vitro. Physiol Plant 57: 5–16 (1983).

    Google Scholar 

  3. Chang C-C, Chen C-M, Adams BR, Trost BM: Leucinopine, a characteristic compound of some crown-gall tumors. Proc Natl Acad Sci USA 80: 3573–3576 (1983).

    Google Scholar 

  4. Chilton WS, Hood EE, RinehartJr. KL, Chilton M-D: L,L-Succinamopine: an epimeric crown gall opine. Phytochemistry 24: 2945–2948 (1985).

    Article  Google Scholar 

  5. Chilton WS, Tempe J, Matzke M, Chilton M-D: Succinamopine: a new crown gall opine. J Bacteriol 157: 357–362 (1984).

    PubMed  Google Scholar 

  6. Clapham DH, Ekberg I: Induction of tumors by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. Scand J Forestry Res 1: 435–437 (1986).

    Google Scholar 

  7. Clapham DH, Ekberg I: Induction of tumors by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, p. 463. Plenum Press, New York (1988).

    Google Scholar 

  8. Dandekar AM, Gupta PK, Durzan DJ, Knauf V: Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/Technology 5: 587–590 (1987).

    Article  Google Scholar 

  9. Dellaporta SL, Wood J, Hicks JB: A plant DNA mini preparation: Version 2. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  10. Diner AM, Karnosky DF: Agrobacterium-mediated gene transfer in European larch. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, p. 465. Plenum Press, New York (1988).

    Google Scholar 

  11. Fillatti JJ, Sellmer J, McCown B, Haissig B, comai L: Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206: 192–199 (1987).

    Article  Google Scholar 

  12. Guyon P, Chilton M-D, Petit A, Tempe J. Agropine in ‘null-type’ crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci USA 77: 2693–2697 (1980).

    Google Scholar 

  13. Hakman I, VonArnold S: Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121: 149–158 (1985).

    Google Scholar 

  14. Hood EE, Chilton WS, Chilton M-D, Fraley RT: T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on soybean and alfalfa plants. J Bacteriol 168: 1283–1290 (1986).

    PubMed  Google Scholar 

  15. Hood EE, Helmer GL, Fraley RT, Chilton M-D: The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291–1301 (1986).

    PubMed  Google Scholar 

  16. Jin S, Komari T, Gordon MP, Nester EW: Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169: 4417–4425 (1987).

    PubMed  Google Scholar 

  17. Leary JJ, Brigati DJ, Ward DC: Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose. Bio-blots. Proc Natl Acad Sci USA 80: 4045–4049 (1983).

    PubMed  Google Scholar 

  18. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  19. MeinsJr F: Habituation of cultured plant cells. In: Kahl G, Schell JS (eds) Molecular Biology of Plant Tumors, pp. 3–31. Academic Press, Inc, NewYork (1982).

    Google Scholar 

  20. Morris JW, Castle LA, Morris RO: Transformation of Pinaceous gymnosperms by Agrobacterium. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, p. 481. Plenum Press, New York (1988).

    Google Scholar 

  21. Otten LABM, Schilperoort RA: A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochem Biophys Acta 527: 497–500 (1978).

    PubMed  Google Scholar 

  22. Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP: Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology 4: 533–536 (1986).

    Article  Google Scholar 

  23. Pythoud F, Sinkar VP, Nester EW, Gordon MP: Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo542: Application to genetic engineering of poplar. Bio/Technology 5: 1323–1327 (1987).

    Article  Google Scholar 

  24. Sciaky D, Montoya AL, Chilton M-D. Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253 (1978).

    PubMed  Google Scholar 

  25. Sederoff R, Stomp A-M, Chilton WS, Moore LW: Gene transfer into loblolly pine by Agrobacterium tumefaciens. Bio/Technology 4: 647–649 (1986).

    Article  Google Scholar 

  26. Sederoff RR, Ledig T: Increasing forest productivity and value through biotechnology. In: Forest Potentials: Productivity and Value, pp. 253–276. Weyerhaeuser Science Symposium, Volume 4. Weyerhaeuser Company (1985).

  27. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–518 (1975).

    PubMed  Google Scholar 

  28. Stomp AM, Loopstra C, Sederoff RJ, Chilton WS, Fillatti JA, Dupper G, Tedeschi P, Kinlaw C: Development of a DNA transfer system for pines. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, pp. 231–241. Plenum Press, New York (1988).

    Google Scholar 

  29. Wahl GM, Stern M, Stark GR: Efficient transfer of large DNA fragments from agarose gels to diazobenzloxymethyl-paper and rapid hybridization using dextran sulfate. Proc Natl Acad Sci USA 76: 3683–3687 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hood, E.E., Clapham, D.H., Ekberg, I. et al. T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281. Plant Mol Biol 14, 111–117 (1990). https://doi.org/10.1007/BF00018552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018552

Key words

Navigation