Skip to main content
Log in

Optimization of the conditions for Casuarina cunninghamiana Miq. genetic transformation mediated by Agrobacterium tumefaciens

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Using epicotyl fragments of the actinorhizal tree Casuarina cunninghamiana and the disarmed strain of Agrobacterium tumefaciens C58C1 (pGV2260) containing the pBIN19-35S-GUSINT binary vector, a method for the genetic transformation of C. cunninghamiana was established. Transformed cells were initially selected for 2 weeks on nutrient medium supplemented with kanamycin 20 mg L−1 during callus induction, and then subcultured with 50 mg L−1 until adventitious bud and shoot differentiation. Different factors involved in the early stages of the T-DNA transfer process were studied. Agrobacterium-mediated DNA delivery was most successful when epicotyl fragments excised from 45-day-old seedlings were co-cultivated with an exponentially growing culture of A. tumefaciens at an OD600nm of 0.3, for 5 days in the presence of 50 μM of acetosyringone. Kanamycin resistant calli were observed on 88.89 % of the explants and transgenic rooted C. cunninghamiana plants were obtained in 6 months. Evidence of genetic transformation was demonstrated by ß-glucuronidase histochemical assays and polymerase chain reaction analyses. The possibility to obtain transgenic nitrogen-fixing nodules after inoculation by the soil actinomycete Frankia was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An X, Wang B, Liu L, Jiang H, Chen J, Ye S, Chen L, Guo P, Huang X, Peng D (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 45:3257–3269. doi:10.1007/s11033-014-3188-4

    Article  Google Scholar 

  • Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S (2006) A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep 25:651–659. doi:10.1007/s00299-005-0099-9

    Article  CAS  PubMed  Google Scholar 

  • Belide S, Hac L, Singh SP, Green AG, Wood CC (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12. doi:10.1186/1746-4811-7-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benabdoun FM, Nambiar-Veetil M, Imanishi L, Svistoonoff S, Ykhlef N, Gherbi H, Franche C (2011) Composite actinorhizal plants with transgenic roots for the study of symbiotic associations with Frankia. J Bot 2011:1–8. doi:10.1155/2011/702947

    Article  Google Scholar 

  • Benson DR (1982) Isolation of Frankia strains from alder actinorhizal root nodules. Appl Environ Microbiol 44:461–465

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Z, Huang X, Wu R (2001) Comparison of biolistic and Agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice. Acta Bot Sin 43:826–833

    CAS  Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532–537

    Article  CAS  PubMed  Google Scholar 

  • Diouf D, Sy MO, Gherbi H, Bogusz D, Franche C (2009) Casuarinaceae. In: Kole CR, Scorza R, Hall TC (eds) Compendium of transgenic crop plants: transgenic forest tree species, part 9. Blackwell Publishing, Oxford, pp 279–292. doi:10.1002/9781405181099.k0910

    Google Scholar 

  • Franche C, Diouf D, Le QV, Bogusz D, Diaye AN, Gherbi H, Gobe C, Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J 11:897–904. doi:10.1046/j.1365-313X.1997.11040897.x

    Article  CAS  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524. doi:10.1094/MPMI-21-5-0518

    Article  CAS  PubMed  Google Scholar 

  • Ghimire BK, Seong ES, Lim JD, Heo K, Kim MJ, Chung I-M, Juvik JA, Yu CY (2008) Agrobacterium-mediated transformation of Codonopsis lanceolata using the γ-TMT gene. Plant Cell Tiss Organ Cult 95:265–274. doi:10.1007/s11240-008-9440-7

    Article  CAS  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224. doi:10.1007/BF00232562

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231. doi:10.1016/S1360-1385(99)01412-0

    Article  PubMed  Google Scholar 

  • He R, Gang DR (2014) Somatic embryogenesis and Agrobacterium-mediated transformation of turmeric (Curcuma longa). Plant Cell Tiss Organ Cult 116:333–342. doi:10.1007/s11240-013-0407-y

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Exp Stn Circ 347:1–39

  • Ishizaki T, Kumashiro T (2011) Investigations of copy number of transgene, fertility and expression level of an introduced GUS gene in transgenic NERICA produced by Agrobacterium-mediated methods. In Vitro Cell Dev Biol Plant 47:339–347. doi:10.1007/s11627-011-9341-z

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi:10.1007/BF02667740

    Article  CAS  Google Scholar 

  • Ji Q, Xu X, Wang K (2013) Gentic transformation of major cereal crops. Int J Dev Biol 57:495–508. doi:10.1387/ijdb.130244kw

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Zhong C, Nambiar-Veetil M, Svistoonoff S, Gherbi H, Hocher V, Bonneau J, Moukouanga D, Bogusz D, Franche C (2011) Genetic transformation of Causarinaceae trees. In: Zhong C, Pinyopusarek K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity. China Forestry Publishing House, Haikou, pp 112–115

    Google Scholar 

  • Jiang Q, Zhang Y, Zhong C, Zeng B, Bogusz D, Franche C (2012) Establishment of an in vitro plant regeneration protocol for Casuarina cunninghamiana Miq. via indirect organogenesis. New Forest 43:143–154. doi:10.1007/s11056-011-9277-5

    Article  Google Scholar 

  • Karthikeyan A, Shilpha J, Pandian SK, Ramesh M (2012) Agrobacterium-mediated transformation of indica rice cv. ADT 43. Plant Cell Tiss Organ Cult 109:153–165. doi:10.1007/s11240-011-0083-8

    Article  CAS  Google Scholar 

  • Khan EU, Fu XZ, Liu JH (2012) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf segments as explants in Valencia sweet orange. Plant Cell Tiss Organ Cult 109:383–390. doi:10.1007/s11240-011-0092-7

    Article  CAS  Google Scholar 

  • Le QV, Bogusz D, Gherbi H, Lappartient A, Duhoux E, Franche C (1996) Agrobacterium tumefaciens gene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci 118:57–69. doi:10.1016/0168-9452(96)04386-5

    Article  CAS  Google Scholar 

  • Mehrotra M, Sanyal I, Amla DV (2011) High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Rep 30:1603–1616. doi:10.1007/s00299-011-1071-5

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2013) Efficient genetic transformation of Withania coagulans (Stocks) dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–458. doi:10.1007/s00709-012-0428-0

    Article  CAS  PubMed  Google Scholar 

  • Movahedi A, Zhang J, Amirian R, Zhuge Q (2014) An efficient Agrobacterium-Mediated transformation system for Poplar. Int J Mol Sci 15:10780–10793. doi:10.3390/ijms150610780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • National Research Council (1984) Casuarinas: nitrogen-fixing trees for adverse sites. National Academic Press, Washington DC

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. doi:10.1126/science.163.3862.85

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260. doi:10.1023/A:1008967916498

    Article  CAS  PubMed  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempé J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Nat Biotechnol 9:461–466. doi:10.1038/nbt0591-461

    Article  CAS  Google Scholar 

  • Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92. doi:10.1186/1471-2229-11-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santi C, Svistoonoff S, Constans L, Auguy F, Duhoux E, Bogusz D, Franche C (2003) Choosing a reporter for gene expression studies in transgenic actinorhizal plants of the Casuarinaceae family. Plant Soil 254:229–237. doi:10.1023/A:1024919400938

    Article  CAS  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290. doi:10.1016/j.plantsci.2006.09.005

    Article  CAS  Google Scholar 

  • Smouni A, Laplaze L, Bogusz D, Guermache F, Auguy F, Duhoux E, Franche C (2002) The 35S promoter is not constitutively expressed in the transgenic tropical actinorhizal tree Casuarina glauca. Funct Plant Biol 29:649–656. doi:10.1071/PP01121

    Article  CAS  Google Scholar 

  • Stevens ME, Pijut PM (2014) Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda. Plant Cell Rep 33:861–870. doi:10.1007/s00299-014-1562-2

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Gherbi H, Nambiar-Veetil M, Zhong C, Michalak Z, Laplaze L, Vaissayre V, Auguy F, Hocher V, Doumas P, Bonneau J, Bogusz D, Franche C (2010) Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50:3–11. doi:10.1007/s13199-009-0036-8

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Conner-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250. doi:10.1007/BF00260489

    Article  CAS  PubMed  Google Scholar 

  • Veale MA, Slabbert MM, Van Emmenes L (2012) Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). S Afr J Bot 80:67–74. doi:10.1016/j.sajb.2012.02.007

    Article  CAS  Google Scholar 

  • Wang B, Liu L, Wang X, Yang J, Sun Z, Zhang N, Gao S, Xing X, Peng D (2009) Transgenic ramie [Boehmeria nivea (L.) Gaud.]: factors affecting the efficiency of Agrobacterium tumefaciens-mediated transformation and regeneration. Plant Cell Rep 28:1319–1327. doi:10.1007/s00299-009-0732-0

    Article  PubMed  Google Scholar 

  • Wang H, Wang C, Liu H, Tang R, Zhang H (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep 30:2037–2044. doi:10.1007/s00299-011-1111-1

    Article  CAS  PubMed  Google Scholar 

  • Wilson KL, Johnson LAS (1989) Casuarinaceae. In: George AS (ed) Flora of Australia, vol 3., Hamamelidales to CasuarinalesAustralian Government Publishing Service, Canberra, pp 100–182

    Google Scholar 

  • Zhong C, Bai J (1996) Introduction trials of casuarinas in southern China. In: Pinyopusarerk K, Turnbull JW, Midgley SJ (eds) Recent casuarina research and development. CSIRO, Canberra, pp 191–195

    Google Scholar 

  • Zhong CL, Zhang Y, Chen Y, Jiang QB, Chen Z, Liang JF, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114. doi:10.1007/s13199-009-0039-5

    Article  Google Scholar 

  • Zhong C, Jiang Q, Zhang Y, Nambiar-Veetil M, Virginie V, Bogusz D, Franche C (2011) Genetic transformation of Causarina equisetifolia by Agrobacterium tumefaciens. In: Zhong C, Pinyopusarek K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved casuarina productivity. China Forestry Publishing House, Haikou, pp 163–169

    Google Scholar 

  • Zhong C, Mansour S, Nambiar-Veetil M, Bogusz D, Franche C (2013) Casuarina glauca: a model tree for basic research in actinorhizal symbiosis. J Biosci 38:815–823. doi:10.1007/s12038-013-9370-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the 12th National Five-Year Plan for Forestry Project (2012BAD01B0603), the Ministry of Finance of China through a Specific Program for National Non-profit Scientific Institutions (RITFYWZX201203) and Guangdong Province Forestry Science & Technology Innovation Project (2014KJCX017).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonglu Zhong.

Additional information

Qingbin Jiang and Yingzi Ma equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Ma, Y., Zhong, C. et al. Optimization of the conditions for Casuarina cunninghamiana Miq. genetic transformation mediated by Agrobacterium tumefaciens . Plant Cell Tiss Organ Cult 121, 195–204 (2015). https://doi.org/10.1007/s11240-014-0694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0694-y

Keywords

Navigation