Skip to main content
Log in

A model of the electrical behaviour of myelinated sensory nerve fibres based on human data

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 1999

Abstract

Calculation of the response of human myelinated sensory nerve fibres to spinal cord stimulation initiated the development of a fibre model based on electro-physiological and morphometric data for human sensory nerve fibres. The model encompasses a mathematical description of the kinetics of the nodal membrane, and a non-linear fibre geometry. Fine tuning of only a few, not well-established parameters was performed by fitting the shape of a propagating action potential and its diameter-dependent propagation velocity. The quantitative behaviour of this model corresponds better to experimentally determined human fibre properties than other mammalian, non-human models do. Typical characteristics, such as the shape of the action potential, the propagation velocity and the strength-duration behaviour show a good fit with experimental data. The introduced diameter-dependent parameters did not result in a noticeable diameter dependency of action potential duration and refractory period. The presented model provides an improved tool to analyse the electrical behaviour of human myelinated sensory nerve fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behse, F. (1990): ‘Morphometric studies on the human sural nerve’,Acta Neurol. Scand.,82, Suppl. 132, pp. 1–38

    Google Scholar 

  • Bement, S. L., andRanck, J. B. (1969): ‘A quantitative study of electrical stimulation of central myelinated fibers with monopolar electrodes’,Exp. Neurol.,24, pp. 147–170

    Article  Google Scholar 

  • Bostock, H. (1983): ‘The strength-duration relationships for excitation of myelinated nerve: computed dependence on membrane parameters’,J. Physiol.,341, pp. 59–74

    Google Scholar 

  • Bostock, H., andRothwell, J. C. (1997): ‘Latent addition in motor and sensory fibres of human peripheral nerve’,J. Physiol. (London),498, pp. 227–294

    Google Scholar 

  • Boyd, I. A., andKalu, K. U. (1979): ‘Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb’,J. Physiol.,289, pp. 277–297

    Google Scholar 

  • Buchthal, F., andRosenfalck, A. (1966): ‘Evoked action potentials and conduction velocity in human sensory nerves’,Brain Res.,3 (special issue)

  • Burton, C. (1975): ‘Dorsal column stimulation: optimization of application’,Surg. Neurol.,4, pp. 171–176

    Google Scholar 

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B., andStagg, D. (1979): ‘A quantitative description of membrane currents in rabbit myelinated nerve’,J. Physiol.,292, pp. 149–166

    Google Scholar 

  • Frankenhaeuser, B., andHuxley, A. F. (1964): ‘The action potential in the myelinated nerve fibre of Xenopus Leavis as computed on the basis of voltage clamp data’,J. Physiol.,171, pp. 302–315

    Google Scholar 

  • Frijns, J. H., Mooij, J., andTen Kate, J. H. (1994): ‘A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design’,IEEE Trans. Biomed. Eng.,41, pp. 556–566

    Article  Google Scholar 

  • Frijns, J. H. M., andTen Kate, J. H. (1994): ‘A model of myelinated nerve fibres for electrical prosthesis design’,Med. Biol. Eng. Comput.,32(4), pp. 391–398

    Article  Google Scholar 

  • Gilliat, R. W., andWilson, R. G. (1963): ‘The refractory and supernormal periods of the human median nerve’,J. Neurol. Neurosurg. Psychiat.,26, pp. 136–147

    Article  Google Scholar 

  • Hodgkin, A. L., andHuxley, A. F. (1952): ‘A quantitative description of membrane currents and its application to conduction and excitation in nerve’,J. Physiol.,117, pp. 500–544

    Google Scholar 

  • Ishikawa, M., Ohira, T., Yamaguchi, N., Takase, M., Berta-Lanffy, H., Kawase, T., andToya, S. (1996): ‘Strength-duration of conductive spinal cord evoked potentials in cats’,Electroenceph. Clin. Neurophysiol.,100, pp. 261–268

    Article  Google Scholar 

  • Jankowska, E., andRoberts, W. J. (1972): ‘An electrophysiological demonstration of the axonal projections of single spinal interneurons in the cat’,J. Physiol.,222, pp. 597–622.

    Google Scholar 

  • McNeal, D. R. (1976): ‘Analysis of a model for excitation of myelinated nerve’,IEEE Trans. Biomed. Eng.,23, pp. 329–337

    Article  Google Scholar 

  • Mogyros, I., Kiernan, M. C., andBurke, D. (1996): ‘Strengthduration properties of human peripheral nerve’,Brain,119, pp. 439–447

    Article  Google Scholar 

  • Nowak, L. G., andBullier, J. (1998): ‘Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter: I. Evidence from chronaxie measurements’,Exp. Brain Res.,118, pp. 477–488

    Article  Google Scholar 

  • Paintal, A. S. (1966): ‘The influence of diameter of medullated nerve fibers of cat on the rising and falling phases of the spike and its recovery’,J. Physiol.,184, pp. 791–811

    Google Scholar 

  • Paintal, A. S. (1973): ‘Conduction in mammalian nerve fibres’,in Desmedt, J. E. (Ed.): ‘New developments in electromyography and clinical neurophysiology’ (Karger, Basel), pp. 19–41

    Google Scholar 

  • Paintal, A. S. (1978): ‘Conduction properties of normal peripheral mammalian axons’,in Waxman, S. G. (Ed.): ‘Physiology and pathobiology of axons’ (Raven Press, New York) pp. 131–144

    Google Scholar 

  • Panizza, M., Nilsson, J., Roth, B. J., Rothwell, J. andHallett, M. (1994): ‘The time constants of motor and sensory peripheral nerve fibers measured with the method of latent addition’,Electroenceph. Clin. Neurophysiol.,93, pp. 147–154

    Article  Google Scholar 

  • Panizza, M., Nilsson, J., Roth, B. J., Grill, S. E., Demirci, M., andHallet, M. (1998): ‘Differences between the time constant of sensory and motor peripheral nerve fibers: further studies and considerations’,Muscle & Nerve,21, pp. 48–54

    Article  Google Scholar 

  • Rattay, F., andAberham, M. (1993): ‘Modeling axon membranes for functional electrical stimulation’,IEEE Trans. Biomed. Eng.,40, pp. 1201–1209

    Article  Google Scholar 

  • Rubinstein, J. T. (1991): ‘Analytical theory for extracellular electrical stimulation of nerve with focal electrodes: II. Passive myelinated axon’,Biophys. J.,60, pp. 538–555

    Article  Google Scholar 

  • Schalow, G., Zäch, G. A., andWarzok, R. (1995): ‘Classification of human peripheral nerve fiber groups by conduction velocity and nerve fiber diameter is preserved following spinal cord lesion’,J. Aut. Nervous Syst.,52, pp. 125–150

    Article  Google Scholar 

  • Scholz, A., Reid, G., Vogel, W., andBostock, H. (1993): ‘Ion channels in human axons’,J. Neurophysiol.,70, pp. 1274–1279

    Google Scholar 

  • Schwarz, J. R., andEikhof, G. (1987): ‘Na-currents and action potentials in rat myelinated nerve fibers at 20 and 37°C’,Pflugers Arch.,409, pp. 569–577

    Article  Google Scholar 

  • Schwarz, J. R., Reid, G., andBostock, H. (1995): ‘Action potentials and membrane currents in the human node of Ranvier’,Eur. J. Physiol.,430, pp. 283–292

    Article  Google Scholar 

  • Struijk, J. J., Holsheimer, J., Van Der Heide, G. G., andBoom, H. B. K. (1992): ‘Recruitment of dorsal column fibers in spinal cord stimulation: Influence of collateral branching’,IEEE Trans. Biomed. Eng.,39, pp. 903–912

    Article  Google Scholar 

  • Struijk, J. J., Holsheimer, J., Barolat, G., He, J., andBoom, H. B. K. (1993): ‘Paresthesia thresholds in spinal cord stimulation: A comparison of theoretical results with clinical data’,IEEE Trans. Rehab. Eng.,1, pp. 101–108

    Article  Google Scholar 

  • Sweeney, J. D., Mortimer, J. T., andDurand, D. (1987): ‘Modeling of mammalian myelinated nerve for functional neuromuscular stimulation’,Proc. IEEE 9th Conf. of the EMBS, pp. 1577–1578

  • Tackmann, W., andLehmann, H. J. (1974): ‘Refractory period in human sensory nerve fibers’,Eur. Neurol.,12, pp. 277–292

    Article  Google Scholar 

  • Van Veen, B. K., Schellens, R. L. L. A., Stegeman, D. F., Schoonhoven, R., andGabreëls-Festen, A. A. W. M. (1995): ‘Conduction velocity distributions in normal human sural nerve’,Muscle & Nerve,18, pp. 1121–1127

    Article  Google Scholar 

  • Veltink, P. H., Van Veen, B. K., Struijk, J. J., Holsheimer, J., andBoom, H. B. K. (1989): ‘A modeling study of nerve fascicle stimulation’,IEEE Trans. Biomed. Eng.,36, pp. 683–692

    Article  Google Scholar 

  • Weiss, G. (1901): ‘Sur la possibilité de rendre comparables entre eux les appareils servant à l'excitation électrique’,Arch. Ital. de Biol.,35, pp. 413–446

    Google Scholar 

  • Wesselink, W. A., Holsheimer, J., Nuttin, B., Boom, H. B. K., King, G. W., Gybels, J. M., andDe Sutter, P. (1998): ‘Estimation of fiber diameters in the spinal dorsal columns from clinical data’,IEEE Trans. Biomed. Eng. (in press)

  • West, D. C., andWolstencroft, J. H. (1983): ‘Strength-duration characteristics of myelinated and non-myelinated bulbospinal axons in the cat spinal cord’,J. Physiol.,337, pp. 37–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Holsheimer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02513344.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesselink, W.A., Holsheimer, J. & Boom, H.B.K. A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Med. Biol. Eng. Comput. 37, 228–235 (1999). https://doi.org/10.1007/BF02513291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513291

Keywords

Navigation