Skip to main content
Log in

Models of Nerve Impulse Generation and Conduction

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Different models and approaches to studying nerve impulse generation and conduction are discussed. Mechanical, thermodynamic and electrical properties of nerve cells have been addressed in many studies. Although developed 70 years ago, the Hodgkin–Huxley model is still the gold standard in neuroscience. The model theoretically described the electric phenomena known for the action potential at that time and led to the development of novel experimental and theoretical approaches to membrane research in biophysics. A mechanical soliton model was proposed as an alternative explanation of the nerve impulse. According to the mechanical soliton model, the nerve impulse is an undamped mechanical wave associated with a phase transition in the lipid bilayer. Proponents of the mechanical soliton model gave their arguments against some points of the Hodgkin–Huxley model. Most of their statements may find explanation within the Hodgkin–Huxley model, given that changes in membrane potential may lead not only to changes in ion channel permeability, but also to changes in membrane thickness, modifications of protein–lipid interactions, and modulation of cooperativity between ion channels. The appearance of a mechanical soliton might be possible in some cases, but is not the main mechanism of nerve excitability. A universal mathematical model is thus necessary in order to interpret all biophysical changes observed during the nerve impulse. The key to achieving this task is to adapt the Hodgkin–Huxley model. This approach to nerve impulse modelling could lead to new experimental designs and new findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. D. Keynes, N. G. Green, and I. C. Forster, Proc. R. Soc. London, Ser. B 240, 411 (1990).

    Article  ADS  Google Scholar 

  2. E. I. Solntseva, J. V. Bukanova, R. V. Kondratenko, and V. G. Skrebitsky, Bull. Exp. Biol. Med. 169, 791 (2020).

    Article  Google Scholar 

  3. S. Kozin, V. Skrebitsky, R. Kondratenko, et al., Molecules 26, 2036 (2021). https://doi.org/10.3390/molecules26072036

    Article  Google Scholar 

  4. M. Häusser, Nat. Methods 11, 1012 (2014).

    Article  Google Scholar 

  5. D. J. Amit and N. Brunel, Cereb. Cortex 7, 237 (1997).

    Article  Google Scholar 

  6. B. C. Abbott, A. V. Hill, and J. V. Howarth, Proc. R. Soc. Lond. B 148, 149 (1958).

    Article  ADS  Google Scholar 

  7. T. Heimburg, Progr. Biophys. Mol. Biol. 162, 26 (2021).

    Article  Google Scholar 

  8. V. V. Galassi and N. Wilke, Membranes 11, 478 (2021).

    Article  Google Scholar 

  9. E. S. Nikitin, A. Yu. Malyshev, P. M. Balaban, and M. A. Volgushev, Zh. Vyssh. Nervn. Deyat. im. I.P. Pa-vlova 66, 279 (2016).

    Google Scholar 

  10. J. Engelbrecht, T. Peets, K. Tamm, et al., Proc. Est. Acad. Sci. 67, 28, (2018).

    Article  MathSciNet  Google Scholar 

  11. M. V. Lomonosov, Complete Works, Volume 3 (Akad. Nauk SSSR, Moscow–Leningrad, 1950–1983).

  12. M. Piccolino, Brain Res. Bull. 46, 381 (1998).

    Article  Google Scholar 

  13. E. du Bois-Reymond, Monatsberichte der Koniglich-Preussischen Akademie der Wissenschaften zu Berlin (Berlin, 1877), pp. 597–650.

    Google Scholar 

  14. H. Helmoholtz, Monatsberichte der Koniglich-Preussischen Akademie der Wissenschaften zu Berlin (Berlin, 1877), pp. 713–726.

    Google Scholar 

  15. W. Ostwald, Zh. Phys. Chem. 6, 71 (1890).

    Article  Google Scholar 

  16. J. Bernstein, Elektrobiologie. Die Lehre von den Elektrischen Vorgangen im Organismus auf Moderner Grundlage Dargestellt (Vieweg, Braunschweig, 1912).

  17. E. Wilke and E. Atzler, Pfuger’s Arch. 146, 430 (1912).

  18. R. S. Lillie, Science (Washington) 48, 51 (1918).

  19. A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952).

    Article  Google Scholar 

  20. J. Del Castillo and B. Katz, Progr. Biophys. Biophys. Chem. 6, 121 (1956).

    Article  Google Scholar 

  21. E. G. Gray and J. Z. Young, J. Cell Biol. 21, 87 (1964).

    Article  Google Scholar 

  22. C. M. Armstrong and F. Bezanilla, J. Gen. Physiol. 63, 533 (1974).

    Article  Google Scholar 

  23. D. N. Nasonov, Local Reaction of Protoplasm and Spreading Excitation (Akad. Nauk SSSR, 1962).

    Google Scholar 

  24. A. C. Troshin, Problems of Cell Permeability (Akad. Nauk SSSR, Moscow–Leningrad, 1956).

    Google Scholar 

  25. G. N. Ling, Life at the Cell and Below-Cell Level. The Hidden History of a Fundamental Revolution in Biology (Pacific Press, New York, 2001).

    Google Scholar 

  26. V. V. Matveev, Cell Biol. Int. 26, 305 (2002).

    Article  Google Scholar 

  27. J. L. Hernandez Caceres, R. G. de Peralta Menendez, M. Castellanos Renté, and A. Garateix Fleites, Int. J. Bio-Med. Comput. 29, 227 (1991).

    Article  Google Scholar 

  28. I. Tasaki and K. Iwasa, J. J. Physiol. 32, 69 (1982).

    Article  Google Scholar 

  29. T. Heimburg and A. Jackson, Proc. Natl. Acad. Sci. 102, 9790 (2005).

    Article  ADS  Google Scholar 

  30. F. Contreras, H. Cervantes, M. Aguero, and M. de Lourdes Najera, Int. J. Mod. Nonlinear Theory Appl. 2, 7 (2013).

    Article  Google Scholar 

  31. M. M. Rvachev, Biophys. Rev. Lett. 5, 73 (2010).

    Article  Google Scholar 

  32. T. Heimburg, Phys. J. 8, 33 (2009).

    Google Scholar 

  33. C. E. Overton, Studien uber die Narkose (Gustav Fischer, Jena, 1901).

    Google Scholar 

  34. A. R. Gonzalez-Perez, L. D. Budvytyte, S. Mosgaard, et al., Phys. Rev. X 4, 031047 (2014).

    Google Scholar 

  35. A. L. Hodgkin, The Conduction of the Nervous Impulse (Liverpool Univ. Press, Liverpool, 1964).

    Google Scholar 

  36. 36. T. Sumikama and S. Oiki, J. Physiol. Sci. 69, 919 (2019).

    Article  Google Scholar 

  37. A. Huxley, The Quantitative Analysis of Excitation and Conduction in Nerve. Nobel Lecture (1963).

  38. V. I. Deshcherevskii, Mathematical Models of Muscle Contraction (Nauka, Moscow, 1977).

    Google Scholar 

  39. E. Kandel, Behavioral Biology of Aplysia (Freeman, New York, 1979).

    Google Scholar 

  40. T. D. Nguyen, N. Deshmukh, J. M. Nagarah, et al., Nat. Nanotechol. 7, 587 (2012).

    Article  ADS  Google Scholar 

  41. M. H. Haston and S. J. Keeler, J. Biol. Phys. 3, 130 (1975).

    Article  Google Scholar 

  42. B. K. Wittmaack, A. N. Volkov, and L. V. Zhigilei, Carbon 143, 587 (2019).

    Article  Google Scholar 

  43. P. G. Kostyuk, S. L. Mironov, and Y. M. Shuba, J. Membrane Biol. 76, 83 (1983).

    Article  Google Scholar 

  44. J. M. Fox and R. Stampfli, Experientia 27, 1289 (1971).

    Article  Google Scholar 

  45. R. W. Berg, M. T. Stauning, J. B. Sorensen, and H. Jahnsen, Phys. Rev. X 7 (2), 028001 (2017).

    Google Scholar 

  46. S. Yomosa, J. Phys. Soc. Japan 18 (10), 1494 (1963).

    Article  ADS  Google Scholar 

  47. A. S. Davydov and A. Eremko, Teor. Mat. Biofiz. 43, 367 (1980).

    Google Scholar 

  48. Z. Sinkala, J. Theor. Biol. 241, 919 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  49. J. M. Hyman, D. W. McLaughlin, and A. C. Scott, On Davydov’s Alpha-Helix Solitons, Long-Time Prediction in Dynamics (Wiley, New York, 1983).

    Google Scholar 

  50. I. Cosic, J. L. Hernandez Caceres, and D. Cosic, EPJ Nonlinear Biomed. Phys. 3, 1 (2015).

    Google Scholar 

  51. H. J. Galla and J. R. Trudell, Biochim. Biophys. Acta 599, 336 (1980).

    Article  Google Scholar 

  52. H. J. Galla and J. R. Trudell, Biochim. Biophys. Acta 602, 522 (1980).

    Article  Google Scholar 

  53. Yu. D. Nechipurenko, R. C. Garcia Reyes, and J. L. Hernandez Caceres, Biophysics 66, 956 (2021). https://doi.org/10.1134/S0006350921060129

  54. M. N. Rezaeva, M. Khenshel’, Kh. L. Ernandes, et al., Biofizika 25 (1), 41 (1980).

    Google Scholar 

  55. V. A. Tverdislov, L. V. Yakovenko, and M. N. Rezaeva, Mol. Biol. 13, 377 (1979).

    Google Scholar 

  56. B. Chanda, O. K. Asamoah, and F. Bezanilla, J. Gen. Physiol. 123, 217 (2004).

    Article  Google Scholar 

  57. R. Blunck, H. McGuire, H. C. Hyde, and F. Bezanilla, Proc. Natl. Acad. Sci. U. S. A. 105, 20263 (2008).

    Article  ADS  Google Scholar 

  58. B. J. Wylie, M. P. Bhate, and A. E. McDermott, Proc. Natl. Acad. Sci. U. S. A. 111, 185 (2014).

    Article  ADS  Google Scholar 

  59. R. D. Keynes and F. Elinder, Proc. R. Soc. London, Ser. B 265, 263 (1998).

    Article  Google Scholar 

  60. Y. Shu, A. Duque, Yu. Yuguo, et al., J. Neurophysiol. 97, 746 (2007).

    Article  Google Scholar 

  61. B. Naundorf, F. Wolf, and M. Volgushev, Nature 440, 1060 (2006).

    Article  ADS  Google Scholar 

  62. P. Baker, A. Hodgkin, and H. J. Meves, J. Physiol. (London) 170, 541 (1964).

    Article  Google Scholar 

  63. A. M. Dikande, http://arxiv.org/abs/2102.10400v1 (2021).

  64. S. E. Shnol’, The Physicochemical Factors of Biological Evolution (Nauka, Moscow, 1979).

    Google Scholar 

  65. The Chemist’s Handbook, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1966), vol. 1, p. 60.

    Google Scholar 

  66. Y. S. Mednikova, N. V. Pasikova, and F. V. Kopytova, Neurosci. Behav. Physiol. 34, 459 (2004).

    Article  Google Scholar 

  67. S. P. Gabuda, Bound Water. Facts and Hypotheses (Nauka, Novosibirsk, 1982).

    Google Scholar 

  68. K. N. Belosludtsev, N. V. Belosludtseva, A. V. Agafonov, et al., Biochim. Biophys. Acta 1848, 2200 (2015).

    Article  Google Scholar 

  69. P. Muzzin, Ann. Endocrinol. (Paris) 63 (2, Pt 1), 106 (2002).

    Google Scholar 

  70. P. R. Manger, N. Patzke, M. A. Spocter, et al., Sci. Rep. 11, 5486 (2021).

    Article  ADS  Google Scholar 

  71. V. E. Zakhvataev and P. G. Khlebopros, Biophysics 57, 61 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.G. Esipova, V.A. Tverdislov, and the reviewers of the article for valuable comments.

Funding

This work was supported by the Program of Basic Research in the Russian Federation for the Extended Period from 2021 to 2030 (project no. 121052600299-1) and a state contract with the Southern Research Center (project no. 122020100351-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. Hernandez Caceres or Yu. D. Nechipurenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caceres, J.L., Dzhimak, S.S., Semenov, D.A. et al. Models of Nerve Impulse Generation and Conduction. BIOPHYSICS 67, 582–592 (2022). https://doi.org/10.1134/S0006350922040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922040078

Keywords:

Navigation