Skip to main content
Log in

A model of myelinated nerve fibres for electrical prosthesis design

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Starting with the spatially extended non-linear node model (Reilly et al., 1985), which incorporates Frankenhaeuser-Huxley non-linearities at each of several nodes in a row, a model is developed to describe many aspects of the behaviour of mammalian nerve fibres in a quantitative way. By taking into account the effects of temperature and by introducing a realistic nerve morphology, a good fit is obtained between the shape, duration and conduction velocity of simulated and in vivo action potentials in mammals. The resulting model correctly predicts the influence of physiological variations of body temperature on various aspects of nerve behaviour. It is shown that the absolute refractory period predicted by the model is within physiological ranges. Both in vivo and in the model, the spike amplitude and the spike conduction velocity are reduced in the relative refractory period. It is concluded that single-node models (although widely used) cannot replace this multiple nonlinear node model, as the stimulus repetition rates that can be followed by the simulated nerve fibre are limited by impulse conduction properties, rather than by the frequency following behaviour of a single node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, I. A., andKalu, K. U. (1979): ‘Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb’,J. Physiol. Lond.,289, pp. 277–297

    Google Scholar 

  • Brismar, T. (1980): ‘Potential clamp analysis of membrane currents in rat myelinated nerve fibres’, ——Ibid.,298, pp. 171–184

    Google Scholar 

  • Chu, S. Y., Ritchie, J. M., Rogart, R. B., andStagg, D. (1979): ‘A quantitative description of membrane currents in rabbit myelinated nerve’, ——Ibid.,292, pp. 149–166.

    Google Scholar 

  • Colombo, J., andParkins, C. W. (1987): ‘A model of electrical excitation of the mammalian auditory-nerve neuron,Hear. Res.,31, pp. 287–312

    Article  Google Scholar 

  • Frankenhaeuser, B., andMoore, L. E. (1963): ‘The effect of temperature on sodium and potassium permeability changes in myelinated nerve fibres of Xenopus Laevis,’J. Physiol. Lond.,169, pp. 431–437

    Google Scholar 

  • Frankenhaeuser, B., andHuxley, A. F. (1964): ‘The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data’, ——ibid.,171, pp. 302–315

    Google Scholar 

  • Fruns, J. H. M., andSchoonhoven, R. (1992): ‘Refractoriness and Frequency Following Behavior in a Model of Electrical Stimulation of Mammalian Myelinated Nerve Fibres,’Proc. Ann. Conf. IEEE-EMBS,14, pp. 1372–1373

    Google Scholar 

  • Gaumond, R. P., Molnar, C. E., andKim, D. O. (1982): ‘Stimulus and recovery dependence of cat cochlear nerve fibre spike discharge probability,’J. Neurophysiol.,48, pp. 856–873

    Google Scholar 

  • Gorman, P. H., andMortimer, J. T. (1983): ‘The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation,”IEEE Trans.,BME-60, pp. 407–414

    Google Scholar 

  • Guyton, A. C. (1981): ‘Textbook of medical physiology’, (W. B. Saunders Company, Philadelphia) pp. 41–54

    Google Scholar 

  • Halter, J. A., andClark, J. W. Jr. (1991): ‘A distributed-parameter model of the myelinated nerve fibre.J. Theor. Biol.,148, pp. 345–382

    Article  Google Scholar 

  • Hess, A., andYoung, J. Z. (1949): ‘Correlation of internodal length and fibre diameter in the central nervous system,’Nature,164, pp. 490–491

    Google Scholar 

  • Hursh, J. B. (1939): ‘Conduction velocity and diameter of nerve fibres,’Am. J. Physiol.,127, pp. 131–139

    Google Scholar 

  • McNeal, D. R. (1976): ‘Analysis of a model for excitation of myelinated nerve,’IEEE Trans.,BME-23, pp. 329–337

    Google Scholar 

  • Meier, J. H., Rutten, W. L. C., Zoutman, A. E., Boom, H. B. K., andBergveld, P. (1992): ‘Simulation of multipolar fibre selective neural stimulation using intrafascicular electrodes’,IEEE Trans.,BME-39, pp. 122–134

    Google Scholar 

  • Moore, J. W., Joyner, R. W., Brill, M. H., Waxman, S. D., andNajar-Joa, M. (1978): ‘Simulations of conduction in uniform myelinted fibres: relative sensitivity to changes in nodal and internodal parameters,’Biophys. J.,21, pp. 147–160

    Article  Google Scholar 

  • Motz, H., andRattay, F. (1986): ‘A study of the application of the Hodgkin-Huxley and the Frankenhaeuser-Huxley model for electrostimulation of the acoustic nerve,’Neursci.,18, pp. 699–712

    Article  Google Scholar 

  • Paintal, A. S. (1966): ‘The influence of diameter of medullated nerve fibres of cat on the rising and falling phase of the spike and its recovery,’J. Physiol. Lond.,184, pp. 791–811

    Google Scholar 

  • Paintal, A. S. (1973): ‘Conduction in mammalian nerve fibres’in Desmedt, J. E. (Ed.): New developments in electromyography and clinical neurophysiology’ (Karger, Basel) pp. 19–41

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., andVetterling, W. T. (1988): ‘Numerical recipes: the art of scientific computing’ (Cambridge University Press, Cambridge) pp. 547–560

    MATH  Google Scholar 

  • Panck, J. B. Jr. (1975): ‘Which elements are excited in electrical stimulation of mammalian central nervous system: a review,’Brain Res.,98, pp. 417–440

    Article  Google Scholar 

  • Reilly, J. P., Freeman, V. T., andLarkin, W. D. (1985): ‘Sensory effects of transient electrical stimulation: evaluation with a neuroelectrical model,’IEEE Trans.,BME-32, pp. 1001–1011

    Google Scholar 

  • Reilly, J. P., andBauer, R. H. (1987). ‘Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study,’IEEE Trans.,BME-34, pp. 752–754

    Google Scholar 

  • Reilly, J. P. (1989): ‘Peripheral nerve stimulation by induced electrical currents: exposure to time-varying magnetic fields,’Med. Biol. Eng. Comput.,27, (2), pp. 101–110

    Article  MathSciNet  Google Scholar 

  • Schoepfle, G. M., andErlanger, J. (1941): ‘The action of temperature on the excitability, spike height and configuration, and the refractory period observed in the responses of single medullated nerve fibres,’Am. J. Physiol.,134, pp. 694–704

    Google Scholar 

  • Schwarz, J. R., andEikhof, G. (1987): ‘Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C”,Pflügers Arch.,409, pp. 569–577

    Article  Google Scholar 

  • Stegeman, D. F., De Weerd, J. P. C., andNotermans, S. L. H. (1983): ‘Modelling compound action potential of peripheral nerves in situ III: nerve propagation in the refractory period”,Electroenceph. Clin. Neurophysiol.,55, pp. 668–679

    Article  Google Scholar 

  • Struijk, J. J., Holsheimer, J., van der Heide, G. G., andBoom, H. B. K. (1992): ‘Recruitment of dorsal column fibres in spinal cord stimulation: influence of collateral branching’,IEEE Trans.,BME-9, pp. 903–912

    Google Scholar 

  • Sweeney, J. D., Mortimer, J. T., andDurand, D. (1987): ‘Modelling of mammalian myelinated nerve for functional neuromuscular stimulation’,Proc. Ann. Conf. IEEE-EMBS,9, pp. 1577–1578

    Google Scholar 

  • Tasaki, I. (1982): ‘Physiology and electrochemistry of nerve fibres’ (Academic Press, New York)

    Google Scholar 

  • Tyler, R. S., Moore, B. C. J., andKuk, F. K. (1989): ‘Performance of some of the better cochlear-implant patients,’J. Speech. Hear. Res.,32, pp. 887–911

    Google Scholar 

  • Veltink, P. H., van Alste, J. A., andBoom, H. B. K. (1989): ‘Multielectrode intrafascicular and extraneural stimulation’,Med. Biol. Eng. Comput.,27, (1), pp. 19–24

    Article  Google Scholar 

  • Warman, E. N., Grill, W. M., andDurand, D. (1992): ‘Modeling the effects of electric fields on nerve fibres: determination of excitation thresholds’,IEEE Trans.,BME-39, pp. 1244–1254

    Google Scholar 

  • Waxman, S. G. (1978): ‘Variations in axonal morphology and their functional significance’ inWaxman, S. G. (Ed.), Physiology and pathobiology of axons’, (Raven Press, New York) pp. 169–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frijns, J.H.M., ten Kate, J.H. A model of myelinated nerve fibres for electrical prosthesis design. Med. Biol. Eng. Comput. 32, 391–398 (1994). https://doi.org/10.1007/BF02524690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524690

Keywords

Navigation