Skip to main content
Log in

Relatedness, phylogeny, and evolution of the fungi

  • Review
  • Published:
Mycoscience

“Traditional studies of evolution have amply demonstrated that evolution at the phenotypic level is characterized by adaptation and opportunism, irregularity in pace, and inequality of rates among lineages. In contrast, studies of molecular evolution have revealed quite different features characterized by changes that are conservative in nature, random in pattern (independent of phenotypic characters), and quite regular in pace with equal rates among diverge [sic] lineages for a given protein”. (Kimura, M. 1983. The neutral theory of molecular evolution, pp. 308–309, Cambridge University Press, Cambridge.)

Abstract

Recent advances in fungal systematics are reviewed in relation to our previous studies. The usefulness of the integrated analysis of genotypic (especially 18S rRNA gene sequence comparisons) and phenotypic (especially ultrastructural and chemotaxonomic data) characters has been emphasized for the major groups and selected taxa of the fungi, and the impact to fungal systematics and evolution is discussed. Our noteworthy studies and findings are: 1) polyphyly of the chytridiomycetes and zygomycetes, 2) phylogenetic origin of the entomophthoralean fungi includingBasidiobolus, 3) detection of a major new lineage “Archiascomycetes,” comprisingTaphrina, Protomyces andSaitoella, Schizosaccharomyces, andPneumocystis, within the Ascomycota, and its phylogenetic and evolutionary significance, 4) polyphyletic origins of species in the anamorphic genusGeosmithia, and 5) phylogenetic placement ofMixia osmundae, species correctly and incorrectly assigned to the genusTaphrina, and basidiomyceotus yeasts. The newest 18S rDNA sequence-based neighbor-joining trees of the Ascomycota are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ahearn, D. G., Sugiyama, J. and Simmons, R. B. 1998.Saitoella S. Goto, Sugiyama, Hamamoto & Komagata. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 600–601. Elsevier, Amsterdam.

    Google Scholar 

  • Ainsworth, G. C. 1973. Introduction and keys to higher taxa. In: The fungi, an advanced treatise, vol. 4A, (ed. by Ainsworth, G. C., Sparrow, F. K. and Sussman, A. S.), pp. 1–7. Academic Press, New York.

    Google Scholar 

  • Alexopoulos, C. J., Mims, C. W. and Blackwell, M. 1996. Introductory mycology, 4th ed. John Wiley and Sons, New York.

    Google Scholar 

  • Baldauf, S. L. and Doolittle, W. F. 1997. Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA94: 12007–12012.

    Article  PubMed  CAS  Google Scholar 

  • Baldauf, S. L. and Palmer, J. D. 1993. Animals and fungi are each other's closest relatives: Congruent evidence from multiple proteins. Proc. Natl. Acad. USA90: 11558–11562.

    Article  CAS  Google Scholar 

  • Barr, D. J. 1992. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia84: 1–11.

    Google Scholar 

  • Bartnicki-Garcia, S. 1970. Cell wall composition and other biochemical markers in fungal phylogeny. In: Phytochemical phylogeny (ed. by Harborne, J. B.), pp. 81–103. Academic Press, London.

    Google Scholar 

  • Bartnicki-Garcia, S. 1987. The cell wall: a crucial structure in fungal evolution. In: Evolutionary biology of the fungi, (ed. by Rayner, A. D. M., Brasier, C. M. and Moore, D.), pp. 389–403. Cambridge University Press, Cambridge.

    Google Scholar 

  • Benny, G. L. and Kimbrough, J. W. 1980. A synopsis of the orders and families of Plectomycetes with keys to genera. Mycotaxon12: 1–91.

    Google Scholar 

  • Berbee, M. L. 1996. Loculoascomycetes origins, and evolution of filamentous ascomycete morphology based on 18S rRNA sequence data. Mol. Biol. Evol.13: 462–470.

    PubMed  CAS  Google Scholar 

  • Berbee, M. L., Swann, E. C. and Taylor, J. W. 1994. Molecular evolution of ascomycete fungi: phylogeny and conflict. In: Ascomycete systematics, (ed. by Hawksworth, D. L.), pp. 201–212. Plenum Press, New York.

    Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1992a. Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol. Phylogenet. Evol.1: 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1992b. Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequences. Mol. Biol. Evol.9: 278–284.

    PubMed  CAS  Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot.71: 1114–1127.

    Google Scholar 

  • Berbee, M. L., Yoshimura, A., Sugiyama, J. and Taylor, J. W. 1995. IsPenicillium monophyletic? An evolution in the family Trichocomaceae from 18S, 5.8S and ITS DNA sequence data. Mycologia87: 210–222.

    CAS  Google Scholar 

  • Bessey, E. A. 1942. Some problems in fungus phylogeny. Mycologia34: 355–379.

    Google Scholar 

  • Blackwell, M. 1994. Minute morphological mysteries: The influence of arthropods on the lives of fungi. Mycologia86: 1–17.

    Google Scholar 

  • Blanz, P. A. and Unseld, M. 1987. Ribosomal RNA as a taxonomic tool in mycology. In: The expanding realm of yeast-like fungi, (ed. by de Hoog, G. S., Smith, M. Th. and Weijman, A. C. M.), pp. 247–258. Elsevier, Amsterdam.

    Google Scholar 

  • Boekhout, T., Fonseca, A., Sampaio, J.-P. and Golubev, W. I. 1993. Classification of heterobasidiomycetous yeasts: characteristics and affiliation of genera to higher taxa of Heterobasidiomycetes. Can. J. Microbiol.39: 276–290.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, A. R., Cgeb-Wu, J. L., Momany, M., Young, R., Szaniszlo, P. J. and Robbins, P. W. 1992. Classification of fungal chitin synthetases. Proc. Natl. Acad. Sci. USA89: 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, B. H. and Taylor, J. W. 1993. Molecular phylogeny of pathogenic and non- pathogenic Onygenales. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 121–128. CAB International, Wallingford.

    Google Scholar 

  • Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S.-D. and White, T. J. 1992. Molecular evolution of the fungi: Relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol. Biol. Evol.9: 285–296.

    PubMed  CAS  Google Scholar 

  • Bruns, T. D., Fogel, R. and Taylor, J. W. 1990. Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia82: 175–184.

    CAS  Google Scholar 

  • Bruns, T. D., Vilgalys, R., Barns, S. M., Gonzalez, D., Hibbett, D. S., Lane, D. J., Simon, L., Stickel, S., Szaro, T. M., Weisburg, W. G. and Sogin, M. L. 1992. Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences. Mol. Phylogenet. Evol.1: 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, T. D., White, T. J. and Taylor, J. W. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Syst.22: 525–564.

    Article  Google Scholar 

  • Cain, R. F. 1972. Evolution of the fungi. Mycologia64: 1–14.

    Google Scholar 

  • Castlebury, L.A. and Domier, L. L. 1998. Small subunit ribosomal RNA gene phylogeny ofPlasmodiophora brassicae. Mycologia90: 102–107.

    CAS  Google Scholar 

  • Cavalier-Smith, T. 1987. The origin of fungi and pseudofungi. In: Evolutionary biology of the fungi, (ed. by Rayner, A. D. M., Brasier, C. M. and Moore, D.), pp. 339–353. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Cavalier-Smith, T. 1993. Kingdom Protozoa and its 18 phyla. Microbiol. Rev.57: 953–994.

    PubMed  CAS  Google Scholar 

  • Chang, J.-M., Oyaizu, H. and Sugiyama, J. 1991. Phylogenetic relationships among eleven selected species ofAspergillus and associated teleomorphic genera estimated from 18S ribosomal RNA partial sequences. J. Gen. Appl. Microbiol.37: 289–308.

    CAS  Google Scholar 

  • Cole, G. T. 1983.Graphiola phoenicis: a taxonomic enigma. Mycologia75: 93–116.

    Google Scholar 

  • Delanoë, P. and Delanoë, M. 1912. Sur les rapporte des kystes de Carini du poumon des rats avec leTrypanosoma lewisi. C. R. Acad. Sci. Paris155: 658–660.

    Google Scholar 

  • Demoulin, V. 1974. The origin of Ascomycetes and Basidiomycetes, the case for a red algal ancestry. Bot. Rev.40: 315–345.

    Google Scholar 

  • Domoto, A. and Iwatsuki, K. 1997. Threats of global warming to biological diversity. Tshukiji Shokan, Tokyo. (In Japanese.)

    Google Scholar 

  • Dutta, S. K. 1976. DNA homologies among heterothallic species ofNeurospora. Mycologia68: 388–401.

    PubMed  CAS  Google Scholar 

  • Edman, J. C., Kavacs, J. A., Masur, H., Santi, D. V., Elwood, H. J. and Sogin, M. L. 1998. Ribosomal RNA sequence showsPneumocystis carinii to be a member of the fungi. Nature334: 519–522.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Felsenstein, J. 1994. PHYLIP-phylogenetic inference package, version 3.5c. Computer programs distributed by the author, Dept. Genetics, Univ. of Washington, Seattle.

    Google Scholar 

  • Fennell, D. I. 1973. Plectomycetes; Eurotiales. In: The fungi, an advanced treatise, vol. 4A, (ed. by Ainsworth, G. C., Sparrow, F. K. and Sussman, A. S.), pp. 45–68. Academic Press, New York.

    Google Scholar 

  • Förster, H., Coffey, M. D., Elwood, H. and Sogin, M. L. 1990. Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia82: 306–312.

    Google Scholar 

  • Galloway, D. J. 1992. Biodiversity: a lichenological perspective. Biodiv. Cons.1: 312–323.

    Article  Google Scholar 

  • Gams, W. 1995. How natural should anamorph genera be? Can. J. Bot.73 (Suppl. 1): S747-S753.

    Google Scholar 

  • Gargas, A., DePriest, P. T., Grube, M. and Tehler, A. 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science268: 1492–1495.

    PubMed  CAS  Google Scholar 

  • Gargas, A. and Taylor, J. W. 1995. Phylogeny of discomycetes, and early radiations of apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp. Mycol.19: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Garner, R., Walker, A. N. and Horst, M. N. 1991. Morphologic and biochemical studies of chitin expression inPneumocystis carinii. J. Protozool.38: 12S-14S.

    PubMed  CAS  Google Scholar 

  • Gäumann, E. A. 1952. The fungi, a description of their morphological features and evolutionary development. Hafner Publ., New York.

    Google Scholar 

  • Gehrig, H., Schüßler, A. and Kluge, M. 1996.Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. J. Mol. Evol.43: 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Geiser, D. M., Frisvad, J. C. and Taylor, J. W. 1998. Evolutionary relationships inAspergillus sectionFumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia90: 831–845.

    CAS  Google Scholar 

  • Geiser, D. M., Timberlake, W. E. and Arnold, M. L. 1996. Loss of meiosis inAspergillus. Mol. Biol. Evol.13: 809–817.

    PubMed  CAS  Google Scholar 

  • Glenn, A. E. Bacon, C. W., Price, R. and Hanlin, R. T. 1996. Molecular phylogeny ofAcremonium and its taxonomic implications. Mycologia88: 369–383.

    CAS  Google Scholar 

  • Goto, S. and Sugiyama, J. 1970. Studies on Himalayan yeasts and molds. IV. Several asporogenous yeasts including two new taxa ofCryptococcus. Can. J. Bot.48: 2097–2101.

    Google Scholar 

  • Goto, S., Sugiyama, J., Hamamoto, M. and Komagata, K. 1987.Saitoella, a new anamorphic genus in the Cryptococcaceae to accommodate two Himalayan yeast isolates formally identified asRhodotorula glutinis. J. Gen. Appl. Microbiol.33: 75–85.

    Google Scholar 

  • Greuter, W., Barrie, F. R., Burdet, H. M., Chaloner, W. G., Demoulin, V., Hawksworth, D. L., Jorgensen, P. M., Nicolson, D. H., Silva, P. C., Trehane, P. and McNeill, J. (eds.). 1994. International code of botanical nomenclature: Tokyo code, adopted by 15th Intern. Bot. Cong., Yokohama, Aug.-Sept. 1993. Koeltz, Königstein.

    Google Scholar 

  • Guadet, J., Julian, J., Lafay, J. F. and Brygoo, Y. 1989. Phylogeny of someFusarium species, as determined by large subunit rRNA sequence comparison. Mol. Biol. Evol.6: 227–242.

    PubMed  CAS  Google Scholar 

  • Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K. and Sogin, M. L. 1987. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc. Natl. Acad. Sci. USA84, 5823–5827.

    Article  PubMed  CAS  Google Scholar 

  • Haines, J. H. and Cooper, C. R. 1993. DNA and mycological herbaria. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 305–315. CAB International, Wallingford.

    Google Scholar 

  • Hamamoto, M., Sugiyama, J., Goto, S. and Komagata, K. 1986a. Numerical taxonomy based on the electrophoretic mobility of enzymes in ther generaRhodosporidium, Cystofilobasidium andRhodotorula determined by reversed-phase high-performance liquid chromatography. J. Gen. Appl. Microbiol.32: 89–99.

    Google Scholar 

  • Hamamoto, M., Sugiyama, J. Goto, S. and Komagata, K. 1986b. DNA base composition of strains in the generaRhodosporidium, Cystofilobasidium, andRhodotorula determined by reversed-phase high-perfromance liquid chromatography. J. Gen. Appl. Microbiol.32: 215–223.

    CAS  Google Scholar 

  • Hamamoto, M., Sugiyama, J. and Komagata, K. 1987. DNA-DNA reassociation studies of strains in the generaRhodosporidium andRhodotorula J. Gen. Appl. Microbiol.33: 57–73.

    CAS  Google Scholar 

  • Hamamoto, M., Sugiyama, J. and Komagata, K. 1988. Transfer ofRhodotorula hasegawae to a new basidiomycetous genusErythrobasidium asErythrobasidium hasegawae. J. Gen. Appl. Microbiol.34: 279–287.

    Google Scholar 

  • Hamamoto, M., Sugiyama, J. and Komagata, K. 1991. Nomenclature of the basidiomycetous yeast speciesErythrobasidium hasegawae. J. Gen. Appl. Microbiol.37: 131–132.

    Google Scholar 

  • Hambleton, S., Egger, K. N. and Currah, R. S. 1998. The genusOidiodendron: species delimitation and phylogenetic relationships based on nuclear ribosomal DNA analysis. Mycologia90: 854–869.

    CAS  Google Scholar 

  • Hasegawa, M., Hashimoto, T., Adachi, J., Iwabe, N., and Miyata, T. 1993. Early branching in the evolution of eukaryotes: ancient divergence ofEntamoeba that lacks mitochondria revealed by protein sequence data. J. Mol. Evol.36: 380–388.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, M., Lida, Y., Yano, T., Takaiwa, F. and Miyata, T. 1985. Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences. J. Mol. Evol.22: 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res.95: 641–655.

    Google Scholar 

  • Hawksworth, D. L. 1994. The recent evolution of lichnology: a science for our times. Crypt. Bot.4: 117–129.

    Google Scholar 

  • Hawksworth, D. L., Kirk, P. M., Sutton, B. C. and Pegler, D. N. 1995. Ainsworth & Bisby's dictionary of the fungi, 8th ed. CAB International, Wallingford, UK.

    Google Scholar 

  • Hendriks, L., De Baere, R., Van de Peer, Y., Neefs, J., Goris, A. and De Wachter, R. 1991. The evolutionary position of the rhodophytePorphyra umbilicalis and the basidiomyceteLeucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J. Mol. Evol.32: 167–177.

    PubMed  CAS  Google Scholar 

  • Hibbett, D. S. 1992. Ribosomal RNA and fungal systematics. Trans. Mycol. Soc. Japan33: 533–556.

    CAS  Google Scholar 

  • Hibbett, D. S., Grimaldi, D. and Donoghue, M. J. 1995. Cretaceous mushrooms in amber. Nature377: 487.

    Article  CAS  Google Scholar 

  • Hibbett, D. S., Grimaldi, D. and Donoghue, M. J. 1997. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. Amer. J. Bot.84: 981–991.

    Article  Google Scholar 

  • Hillis, D. M., Moritz, C. and Mable, C. (eds.), 1996. Molecular systematics, 2nd ed. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hori, H. and Osawa, S. 1987. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol. Biol. Evol.4: 445–472.

    PubMed  CAS  Google Scholar 

  • Ishi, H. 1988. ‘Global environmental report.” Iwanami Shinsho33. Iwanami Shoten, Tokyo. (In Japanese.)

    Google Scholar 

  • Kimura, M. 1968. Evolutionary rate at the molecular level. Nature217: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kobayasi, Y. 1952. On the genusGraphiola found in Japan. Nagaoa1: 32–38.

    Google Scholar 

  • Kohn, L. M. 1992. Developing new characters for fungal systematics: An experimental approach for determining the rank of resolution. Mycologia84: 139–153.

    Google Scholar 

  • Kramer, C. L. 1958. A new genus in the Protomycetaceae. Mycologia50: 916–926.

    Google Scholar 

  • Kramer, C. L. 1987. The Taphrinales. In: The expanding realm of yeast-like fungi, (ed. by de Hoog, G. S., Smith, M. T. and Weijman, A. C. M.), pp. 151–166. Elsevier Amsterdam.

    Google Scholar 

  • Kumar, S. and Rzhetsky, A. 1996. Evolutionary relationships of eukaryotic kingdoms. J. Mol. Evol.42: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Kuraishi, H., Aoki, M., Itoh, M., Katayama, Y., Sugiyama, J. and Pitt, J. I. 1991. Distribution of ubiquinones inPenicillium, and related genera. Mycol. Res.95: 701–711.

    Google Scholar 

  • Kuraishi, H., Ito, H., Tsuzaki, N., Katayama, Y., Yokoyama, T. and Sugiyama, J. 1990. The ubiquinone system as a taxonomic aid inAspergillus and its teleomorphs. In: Modern concepts inPenicillium andAspergillus classification, (ed. by Samson, R. A. and Pitt, J. I.), pp. 407–421. Plenum Press, New York.

    Google Scholar 

  • Kuraishi, H., Katayama-Fujimura, Y., Sugiyama, J. and Yokoyama, T. 1985. Ubiquinone systems in fungi 1. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. Trans. Mycol. Soc. Japan26: 383–395.

    Google Scholar 

  • Kuraishi, H., Sugiyama, J. and Yamada, Y. 1991. Distribution of ubiquinone systems in fungi. Bull. JFCC7: 111–133.

    Google Scholar 

  • Kurtzman, C. P. 1987. Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complimentarity. In: The expanding realm of yeast-like fungi, (ed. by de Hoog, G. S., Smith, M. Th. and Weijman, A. C. M.), pp. 459–468. Elsevier, Amsterdam.

    Google Scholar 

  • Kurtzman, C. P. 1992. rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Int. J. Syst. Bacteriol.42: 1–6.

    PubMed  CAS  Google Scholar 

  • Kurtzman, C. P. 1998a. Nuclear DNA hybridization: Quantitation of close genetic relationships. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 63–74. Elsevier, Amsterdam.

    Google Scholar 

  • Kurtzman, C. P. 1998b. Discussion of teleomorphic and anamorphic ascomycetous yeasts and a key to genera. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 111–121. Elsevier, Amsterdam.

    Google Scholar 

  • Kurtzman, C. P. and Fell, J. W. (eds.) 1998. The yeasts, a taxonomic study, 4th ed. Elsevier, Amsterdam.

    Google Scholar 

  • Kurtzman, C. P. and Phaff, H. J. 1987. Molecular taxonomy. In: The yeasts, vol. 1, (ed. by Rose, A. H. and Harrison, J. S.), pp. 63–94. Academic Press, London.

    Google Scholar 

  • Kurtzman, C. P., Smiley, M. J., Robnett, C. J. and Wicklow, D. T. 1986. DNA relatedness among wild and domesticated species in theAspergillus flavus group. Mycologia78: 955–959.

    Google Scholar 

  • Landvik, S. 1996.Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences. Mycol. Res.100: 199–202.

    CAS  Google Scholar 

  • Landvik, S., Eriksson, O. E., Gargas, A. and Gustafson, P. 1993. Relationships of the genusNeolecta (Neolectales ordo nov., Ascomycotina) inferred from 18S rDNA sequences. Syst. Ascomycetum11: 107–118.

    Google Scholar 

  • Landvik, S., Shaller, N. J. and Eriksson, O. V. 1996. SSU rDNA sequence support for a close relationship between the Elaphomycetales and the Eurotiales and Onygenales. Mycoscience37: 237–241.

    Article  CAS  Google Scholar 

  • Leipe, D. D., Wainright, P. O., Gunderson, J. H., Porter, D., Patterson, D. J., Valois, F., Himmerich, S. and Sogin, M. L. 1994. The stramenopiles from a molecular perspective: 16S-like rRNA sequences fromLabyrinthuloides minuta andCafeteria roenbergenis Phycologia33: 369–377.

    Google Scholar 

  • LéJohn, H. B. 1971. Enzyme regulation, lysine pathways, and cell wall structures as indicators of major lines of evolution in fungi. Nature231: 164–168.

    Article  PubMed  Google Scholar 

  • LéJohn, H. B. 1974. Biochemical parameters of fungal phylogenetics. Evol. Biol.7: 79–125.

    Google Scholar 

  • LoBuglio, K. F., Berbee, M. L. and Taylor, J. W. 1996. Phylogenetic origins of the asexual mycorrhizal symbiontCenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol. Phyloget. Evol.6: 287–294.

    Article  CAS  Google Scholar 

  • LoBuglio, K. F., Pitt, J. I. and Taylor, J. W. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexualTalaromyces state among asexualPenicillium species in subgenusBiverticillium. Mycologia85: 592–604.

    CAS  Google Scholar 

  • Malloch, D. 1979. Plectomycetes and their anamorphs. In: The whole fungus, vol. 1, (ed. by Kendrick, B.), pp. 153–165. National Museum of Natural Sciences, Ottawa.

    Google Scholar 

  • Malloch, D. 1981. The plectomycete centrum. In: Ascomycete systematics, The Luttrelian concept, (ed. by Reynolds, D. R.), pp. 73–91. Springer-Verlag, New York.

    Google Scholar 

  • Malloch, D. and Cain, R. F. 1972. The Trichocomaceae: Ascomycetes withAspergillus, Paecilomyces, andPenicillium imperfect states. Can. J. Bot.50: 2613–2628.

    Google Scholar 

  • Malloch, D. and Cain, R. F., 1973. The Thrichocomaceae (Ascomycetes): Synonyms in recent publications. Can. J. Bot.51: 1647–1648.

    Google Scholar 

  • McKerracher, L. J. and Heath, I. B. 1985. The structure and cycle of the nucleus-associated organelle in two species ofBasidiobolus. Mycologia77: 412–417.

    Google Scholar 

  • Miller, M. W., Yoneyama, M. and Soneda, M. 1976.Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol.26: 286–291.

    Article  Google Scholar 

  • Miyata, T. (ed.) 1998. Molecular evolution: the analytical methods and their applications. Kyoritsu Shuppan, Tokyo. (In Japanese).

    Google Scholar 

  • Moss, S. T. and Young, T. W. K. 1978. Phyletic considerations of the Harpellales and Asellariales (Trichomycetes, Zygomycotina) and the Kickxellales (Zygomycetes, Zygomycotina). Mycologia70: 944–963.

    Google Scholar 

  • Nagahama, T. 1995. Studies on phylogeny and molecular evolution among the lower fungi, with special reference to the entomophthoralean fungi, PhD thesis, Graduate School of The University of Tokyo, Tokyo. (In Japanese.)

    Google Scholar 

  • Nagahama, T., Sato, H., Shimazu, M. and Sugiyama, J. 1995. Phylogenetic divergence of the entomophthoralean fungi: evidence from nuclear 18S ribosomal RNA sequence. Mycologia87: 203–209.

    CAS  Google Scholar 

  • Nakase, T., Hamamoto, M. and Sugiyama, J. 1991. Recent progress in the systematics of basidiomycetous yeasts. Jpn. J. Med. Mycol.32: suppl. 21–30.

    Article  CAS  Google Scholar 

  • Nakase, T. and Komagata, K. 1971. Significance of DNA base composition in the classification of the yeast generaCryptococcus andRhodotorula. J. Gen. Appl. Microbiol.17: 121–130.

    Google Scholar 

  • Nikoh, N., Hayase, N., Iwabe, N., Kuma, K. and Miyata, T. 1994. Phylogenetic relationships of the kingdoms Animalia, Plantae, and Fungi inferred from 23 different protein species. Mol. Biol. Evol.11: 762–768.

    PubMed  CAS  Google Scholar 

  • Nishida, H., Ando, K., Ando, Y., Hirata, A. and Sugiyama, J. 1995.Mixia osmundae: transfer from the Ascomycota to the Basidiomycota based on evidence from molecules and morphology. Can. J. Bot.73 (Suppl. 1): S660-S666.

    Google Scholar 

  • Nishida, H., Blanz, P. A. and Sugiyama, J. 1993. The higher fungusProtomyces inouyei has two group I introns in the 18S rRNA gene. J. Mol. Evol.37: 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, H. and Sugiyama, J. 1993. Phylogenetic relationships amongTaphrina, Saitoella, and other higher fungi. Mol. Biol. Evol.10: 431–436.

    PubMed  CAS  Google Scholar 

  • Nishida, H. and Sugiyama, J. 1994a. Phylogeny and molecular evolution among higher fungi. Nippon Nògeikagaku Kaishi68: 54–57. (In Japanese.)

    CAS  Google Scholar 

  • Nishida, H. and Sugiyama, J. 1994b. Archiascomycetes: detection of a major new lineage within the Ascomycota. Mycoscience35: 361–366.

    Article  Google Scholar 

  • Nishida, H. and Sugiyama, J. 1995. A common group I intron between a plant parasitic fungus and its host. Mol. Biol. Evol.12: 883–886.

    PubMed  CAS  Google Scholar 

  • Nishida, H., Tajiri, Y. and Sugiyama, J. 1998. Multiple origins of fungal group I introns located in the same position of nuclear SSU rRNA gene. J. Mol. Evol.46: 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, T. 1911. A contribution to the monograph of the parasitic Exoascaceae of Japan. In: Collection of botanical papers presented to Prof. Dr. Kingo Miyabe on the occasion of the twenty-fifth anniversary of his academic service, pp. 157–212. Rokumeikwan, Tokyo. (In Japanese.)

    Google Scholar 

  • Oberwinkler, F. 1982. The significance of the morphology of the basidium in the phylogeny of the basidiomycetes. In: Basidium and basidiocarp: Evolution, cytology, function, and development, (ed. by Wells, K. and Wells, E. K.), pp. 9–35. Springer-Verlag, New York.

    Google Scholar 

  • Oberwinkler, F. 1993. Diversity and phylogenetic importance of tropical heterobasidiomyctes. In: Aspects of tropical mycology, (ed. by Issac, S., Frankland, J. C., Watling, R. and Walley, A. J. S.), pp. 121–147. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Oberwinkler, F., Bandoni, R. J., Blanz, P., Deml, G. and Kisimova-Horovitz, L. 1982. Graphiolales: Basidiomycetes parasitic on palms. Pl. Syst. Evol.140: 251–277.

    Article  Google Scholar 

  • O'Donnell, K. 1993.Fusarium and its near relatives. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 225–233. CAB International, Wallingford.

    Google Scholar 

  • O'Donnell, K., Cigelnik, E. and Benny, G. L. 1998b. Phylogenetic relationships among the Harpellales and Kickxellales. Mycologia90: 624–639.

    Google Scholar 

  • O'Donnell, K., Cigelnik, E. and Nirenberg, H. I. 1998a. Molecular systematics and phytogeography of theGibberella fujikuroi species complex. Mycologia90: 465–493.

    Google Scholar 

  • Ogawa, H. and Sugiyama, J. 1997. Evolutionary relationships of the cleistothecial genera withPenicillium, Geosmithia, Merimbla andSarophorum anamorphic states inferred from 18S rDNA sequence divergence. Proc. 3rd Intern. Workshop onPenicillium andAspergillus, May 26–29, 1997, Baarn, Netherlands.

  • Ogawa, H., Yoshimura, A. and Sugiyama, J. 1997. Polyphyletic origins of species of the anamorphic genusGeosmithia and the relationships of the cleistothecial genera: Evidence from 18S, 5S and 28S rDNA sequence analyses. Mycologia89: 756–771.

    CAS  Google Scholar 

  • Paquin, B., Laforest, M.-J., Forget, L., Roewer, I., Wang, Z., Longcore, J. and Lang, B. F. 1997. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr. Genet.31: 380–395.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, S. W. 1993. Molecular genetic assesment of relatedness ofPenicillium subgenusPenicillium. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 121–128. CAB Intern. Wallingford.

    Google Scholar 

  • Peterson, S. W. 1995. Phylogenetic analysis ofAspergillus sectionsCremei andWentii based on ribosomal DNA sequences. Mycol. Res.99: 1349–1355.

    CAS  Google Scholar 

  • Peterson, S. W. 1997a. Phylogenetic relationships inAspergillus based upon rDNA sequence analysis. Proc. 3rd Intern. Workshop onPenicillium andAspergillus, 25–29 May 1997, Baarn, Netherlands.

  • Peterson, S. W. 1997b. Phylogenetic analysis ofPenicillium species based on ITS and Isu-rDNA nucleotide sequences. Proc. 3rd Intern. Workshop onPenicillium andAspergillus, 25–29 May 1997, Baarn, Netherlands.

  • Pitt, J. I. 1980. (“1979a”). The genusPenicillium and its teleomorphic statesEupenicillium andTalaromyces. Academic Press, London.

    Google Scholar 

  • Pitt, J. I. 1979b.Geosmithia gen. nov. forPenicillium lavendulum, and related species. Can. J. Bot.57: 2021–2030.

    Google Scholar 

  • Pitt, J. I. 1995. Phylogeny in the genusPenicillium: a morphologist's perspective. Can. J. Bot.73 (Suppl. 1): S768-S777.

    Google Scholar 

  • Pitt, J. I. and Samson, R. A. 1993. Species names in current use in the Trichocomaceae (Fungi, Eurotiales). In: Names in current use in the families Trichocomaceae, Cladoniaceae, Pinaceae, and Lemnaceae, (ed. by Greuter, W.), pp. 13–57. Koeltz, Königstein.

    Google Scholar 

  • Price, C. W., Fuson, G. B. and Phaff, H. J. 1978. Genome comparison in yeast systematics: delimitation of species within the generaSchwaniomyces, Saccharomyces, Debaryomyces, andPichia. Microbiol. Rev.42: 161–193.

    PubMed  CAS  Google Scholar 

  • Ragan, M. A. and Chapman, D. J. 1978. A biochemical phylogeny of the protists. Academic Press, New York.

    Google Scholar 

  • Raven, P. H., Evert, R. F. and Eichhorn, S. E. 1992. Biology of plants, 5th ed. Worth Publ., New York.

    Google Scholar 

  • Redhead, S. A. 1977. The genusNeolecta (Neolectaceae fam. nov., Lecanolales, Ascomycetes) in Canada. Can. J. Bot. 55: 301–306.

    Google Scholar 

  • Rehner, S. A., and Samuels, G. J. 1994. Taxonomy and phylogeny ofGliocladium analysed from nuclear large subunit DNA sequences. Mycol. Res.98: 625–634.

    CAS  Google Scholar 

  • Rehner, S. A. and Samuels, G. J. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can. J. Bot.73: S816-S823.

    CAS  Google Scholar 

  • Reynolds, D. R. and Taylor, J. W. 1991a. DNA specimens and the “international code of botanical nomenclature.” Taxon40: 311–315.

    Article  Google Scholar 

  • Reynolds, D. R. and Taylor, J. W. 1991b. Nucleic acids and nomenclature: name stability under Article 59. In: Improving the stability of names: needs and options, (ed. by Hawksworth, D. L.), pp. 171–177. Koeltz, Königstein.

    Google Scholar 

  • Reynolds, D. R. and Taylor, J. W. 1992. Article 59: reinterpretation of revision? Taxon42: 91–98.

    Article  Google Scholar 

  • Reynolds, D. R. and Taylor, J. W. (eds.), 1993. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB Intern., Wallingford.

    Google Scholar 

  • Ridley, M. 1996. Evolution, 2nd edition. Blackwell Science, Cambridge, Massachusetts.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  CAS  Google Scholar 

  • Samson, R. A. 1974.Paecilomyces and some allied Hyphomycetes. Stud. Mycol., Baarn6: 1–119.

    Google Scholar 

  • Savile, D. B. O. 1955. A phylogeny of the Basidiomycetes. Can. J. Bot.33: 60–104.

    Google Scholar 

  • Savile, D. B. O. 1968. Possible interrelationships between fungal groups. In: The fungi, an advanced treatise, (ed. by Ainsworth, G. C. and Susmann, A. S.), pp. 649–675. Academic Press, New York.

    Google Scholar 

  • Sietsma, J. H. and Wessels, J. G. H. 1990. Occurrence of glucosaminoglycan in the wall ofSchizosaccharomyces pombe. J. Gen. Microbiol.136: 2261–2265.

    PubMed  CAS  Google Scholar 

  • Simmons, R. B. and Ahearn, D. G. 1987. Cell wall ultrastructure and diazonium blue B reaction ofSporopachyderma quercum, Bullera tsugae, andMalassezia spp. Mycologia79: 38–43.

    Google Scholar 

  • Sjamsuridzal, W., Nishida, H., Ogawa, H., Kakishima, M. and Sugiyama, J. 1999. Phylogenetic positions of rust fungi parasitic on fern: Evidence from the 18S rDNA sequence analysis. Mycoscience40. (In press.)

  • Sjamsuridzal, W., Tajiri, Y., Nishida, H., Thuan, T. B., Kawasaki, H., Hirata, A., Yokota, A. and Sugiyama, J. 1997. Evolutionary relationships of members of the generaTaphrina, Protomyces, Schizosaccharomyces, and related taxa within the archiascomycetes: Integrated analysis of genotypic and phenotypic characters. Mycoscience38: 267–280.

    Google Scholar 

  • Sogin, M. L., Elwood, H. J. and Gunderson, J. H. 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA fromGiardia lamblia. Science243: 75–77.

    PubMed  CAS  Google Scholar 

  • Spathafora, J. W. and Blackwell M. 1993. Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales-Hypocreales connection. Mycologia85: 912–922.

    Google Scholar 

  • Spathafora, J. W., Mitchell, T. G. and Vilgalys, R. 1995. Analysis of gene coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens. J. Clin. Microbiol.33: 1322–1326.

    Google Scholar 

  • Statzell-Tallman, A. 1998.Sterigmatosporidium Kraepelin & Schulze. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 700–702. Elsevier, Amsterdam.

    Google Scholar 

  • Stolk, A. C. and Samson, R. A. 1971. Studies onTalaromyces and related genera. I.Hamigera gen. nov. andByssochlamys.Persoonia 6: 341–357.

    Google Scholar 

  • Stolk, A. C. and Samson, R. A. 1985. A new taxonomic scheme forPenicillium anamorphs. In: Advances inPenicillium andAspergillus systematics, (Samson, R. A. and Pitt, J. I.), pp. 163–192. Plenum Press, New York.

    Google Scholar 

  • Storck, R. 1966. Nucleotide composition of nucleic acids of fungi. II. Deoxyribonucleic acids. J. Bacteriol.91: 227–230.

    PubMed  CAS  Google Scholar 

  • Storck, R., Alexopoulos, C. J. and Phaff, H. J. 1969. Nucleotide composition of deoxyribonucleic acid of some species ofCryptococcus, Rhodotorula andSporobolomyces. J. Bacteriol.98: 1069–1072.

    PubMed  CAS  Google Scholar 

  • Sugita, T. and Nakase, T. 1998. Molecular phylogenetic study of the basidiomycetous anamorphic yeast genusTrichosporon and related taxa based on small subunit ribosomal DNA sequences. Mycoscience39: 7–13.

    Article  CAS  Google Scholar 

  • Sugiyama, J. (ed.) 1987. Pleomorphic fungi: The diversity and its taxonomic implications. Kodansha, Tokyo.

    Google Scholar 

  • Sugiyama, J. 1994. Fungal molecular systematics: Towards a phylogenetic classification for the fungi, Nippon Nògeikagaku Kaishi68: 48–53. (In Japanese.)

    CAS  Google Scholar 

  • Sugiyama, J. 1996a. Classification system of the fungi. In: Iwanami's Dictionary of biology, 4th ed., (ed. by Yasugi, R., Koseki, H., Furuya, M. and Hidaka, T.), pp. 1560–1574. Iwanami Shoten, Tokyo. (In Japanese.)

    Google Scholar 

  • Sugiyama, J. 1996b. The fungal world. Kagaku66: 318–322. (In Japanese).

    Google Scholar 

  • Sugiyama, J. 1998. Appendix (B): ‘The basis of nomenclatural systems and trends in fungal nomenclature’. In: A dictionary of microbial taxonomy, (by Cowan, S. T.; ed. by Hill, L. R.), Cambridge University Press, Cambridge, 1978; translated by Komagata, K., Sugiyama, J., Ando, K., Suzuki, K. and Yokota, A.), pp. 446–480, Gakkai Shuppan Center, Tokyo. (In Japanese).

    Google Scholar 

  • Sugiyama, J., Fukagawa, M., Chiu, S.-W. and Komagata, K. 1985. Cellular carbohydrate composition, DNA base composition, ubiquinone systems and Diazonium blue B color test in the generaRhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J. Gen. Appl. Microbiol.31: 519–550.

    CAS  Google Scholar 

  • Sugiyama, J. and Hamamoto, M. 1998.Erythrobasidium Hamamoto, Sugiyama & Komagata. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 654–655. Elsevier, Amsterdam.

    Google Scholar 

  • Sugiyama, J., Inamura, T., Okada, G., Sjamsuridzal, W., Kawasaki, H. and Hirata, A. 1997. Divergence and molecular evolution among basidiomycetous yeasts with the tropical and subtropical genusGraphiola. In: Progress in microbial ecology, Proc. 7th Intern. Symp. Microbial Ecology, Santos, São Paulo, Brazil, 1995, (ed. by Martins, M. T., Sato, M. I. Z., Tiedje, J. M., Hagler, L. C. N., Döbereiner, J. and Sanchez, P. S.), pp. 173–180. Brazilian Soc. Microbiology, São Paulo.

    Google Scholar 

  • Sugiyama, J., Nagahama, T. and Nishida, H. 1996a. Fungal diversity and phylogeny with emphasis on 18S ribosomal DNA sequence divergence. In: Microbial diversity in time and space, (ed. by Colwell, R. R., Simidu, U. and Ohwada, K.), pp. 41–51. Plenum Press, New York.

    Google Scholar 

  • Sugiyama, J. and Nishida, H. 1994. Phylogenetic divergence of Taphrinalean fungi: Evidence from molecules and morphology. Abst. 5th Intern. Mycol. Congr., Vancouver, Canada, August 14–21, 1994, p. 213.

  • Sugiyama, J. and Nishida, H. 1995. The higher fungi: their evolutionary relationships and implications for fungal systematics. In: Biodiversity and evolution, (ed. by Arai, R., Kato, M. and Doi, Y.), pp. 177–195. The National Science Museum Foundation, Tokyo.

    Google Scholar 

  • Sugiyama, J., Nishida, H. and Suh, S-O. 1993. The paradigm of fungal diagnoses and descriptions in the era of molecular systematics:Saitoella complicata as an example. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W), pp. 261–269. CAB Intern., Wallingford.

    Google Scholar 

  • Sugiyama, J., Rahayu, E. S., Chang, J.-M. and Oyaizu, H. 1991a. Chemotaxonomy ofAspergillus and associated teleomorphs. Jpn. J. Med. Mycol.32 (suppl.): 39–60.

    Article  CAS  Google Scholar 

  • Sugiyama, J. and Suh, S.-O. 1993. Phylogenetic analysis of basidiomycetous yeasts by means of 18S ribosomal RNA sequences: relationship ofErythrobasidium hasegawianum and other basidiomycetous yeast taxa. Antonie van Leeuwenhoek63: 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, J. and Suh, S.-O. 1998.Sympodiomycopsis Sugiyama, Tokuoka & Komagata. In: The yeasts, a taxonomic study, 4th ed., (ed. by Kurtzman, C. P. and Fell, J. W.), pp. 846–847. Elsevier, Amsterdam.

    Google Scholar 

  • Sugiyama, J., Tajiri, Y., Sjamsuridzal, W. and Nishida, H. 1996b. Phylogeny and evolution of archiascomycetes as yeasts. Symp. Program & Abst. Book of 9th Intern. Symp. on Yeasts, Sydney, Australia, August 25–30, 1996, p. 9.

  • Sugiyama, J., Tokuoka, K., Suh, S.-O., Hirata, A. and Komagata, K. 1991b.Sympodiomycopsis: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie van Leeuwenhoek59: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, J. and Yamatoya, K. 1990. Electrophoretic comparison of enzymes as a chemotaxonomic aid amongAspergillus taxa: (1)Aspergillus sects.Ornati andCremei. In: Modern concepts inPenicillium andAspergillus classification, (ed. by Samson, R. A. and Pitt, J. I.), pp. 385–393. Plenum Press, New York.

    Google Scholar 

  • Suh, S.-O., Hirata, A., Sugiyama, J. and Komagata, K. 1993a. Septal ultrastructure of basidiomycetous yeasts and their taxonomic implications with observations on the ultrastructure forErythrobasidium hasegawianum andSympodiomycopsis paphiopedili. Mycologia85: 30–37.

    Google Scholar 

  • Suh, S.-O., Kuroiwa, T. and Sugiyama, J. 1993b. Quantitative differences of nuclear DNA contents and their taxonomic implications inLeucosporidium scottii, Rhodosporidium toruloides, and related basidiomycetous yeasts. J. Gen. Appl. Microbiol.39: 295–302.

    CAS  Google Scholar 

  • Suh, S.-O. and Nakase, T. 1995. Phylogenetic analysis of the ballistosporous anamorphic generaUdenomyces andBullera, and related basidiomycetous yeasts, based on 18S rDNA sequence. Microbiology141: 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Suh, S.-O. and Sugiyama, J. 1993a. Phylogeny among the basidiomycetous yeasts inferred from small subunit ribosomal DNA sequence. J. Gen. Microbiol.139: 1595–1598.

    PubMed  CAS  Google Scholar 

  • Suh, S.-O. and Sugiyama, J. 1993b. Septal pore ultrastructure ofLeucosporidium lari-marini, a basidiomycetous yeast, and its taxonomic implications. J. Gen. Appl. Microbiol.39: 257–260.

    Google Scholar 

  • Suh, S.-O. and Sugiyama, J. 1994. Phylogenetic placement of the basidiomycetous yeastsKondoa malvinella andRhodosporidium dacryoidum, and the anamorphic yeastSympodiomycopsis paphipedili by means of 18S rRNA gene sequence analysis. Mycoscience35: 367–375.

    Article  CAS  Google Scholar 

  • Suh, S.-O., Takashima, M., Hamamoto, M. and Nakase, T. 1996b. Molecular phylogeny of the ballistoconidium-forming anamorphic yeast genusBullera and related taxa based on small subunit ribosomal DNA sequences. J. Gen. Appl. Microbiol.42: 501–509.

    CAS  Google Scholar 

  • Suh, S.-O., Takematsu, A., Takashima, M. and Nakase, T. 1996a. Molecular phylogenetic study on stalked conidium-forming yeasts and related basidiomycetous yeast taxa based on 18S rDNA sequences. Microbiol. Cult. Coll.12: 79–86.

    Google Scholar 

  • Swann, E. C. and Taylor, J. W. 1993. Higher taxa of basidiomycetes: An 18S rRNA gene perspective. Mycologia85: 923–936.

    CAS  Google Scholar 

  • Swann, E. C. and Taylor, J. W. 1995a. Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can. J. Bot.73 (Suppl. 1): S862-S868.

    CAS  Google Scholar 

  • Swann, E. C. and Taylor, J. W. 1995b. Phylogenetic diversity of yeast-producing basidiomycetes. Mycol. Res.99: 1205–1210.

    Google Scholar 

  • Systematics Agenda 2000. 1994. Systematics Agenda 2000: Charting the biosphere, technical report. Amer. Soc. Plant Taxon., Soc. System. Biologists, Willi Hennig Soc., and Assoc. System. Collections.

  • Takashima, M. and Nakase, T. 1996. A phylogenetic study of the genusTilletiopsis, Tilletiaria anomala and related taxa based on the small subunit ribosomal DNA sequences. J. Gen. Appl. Microbiol.42: 421–429.

    CAS  Google Scholar 

  • Takashima, M., Suh, S.-O. and Nakase, T. 1995. Phylogenetic relationships among species of the genusBesingtonia and related taxa based on the small subunit ribosomal DNA sequences. J. Gen. Appl. Microbiol.41: 131–141.

    CAS  Google Scholar 

  • Tamura, M., Kawahara, K. and Sugiyama, J. 1997. Molecular phylogeny ofAspergillus and associated teleomorphs in the Trichocomaceae (Eurotiales). Proc. 3rd Intern. Workshop onPenicillium andAspergillus, May 26–29, 1997, Baarn, Netherlands.

  • Tamura, M., Rahayu, E. S., Gibas, C. F. C. and Sugiyama, J. 1996. Electrophoretic comparison of enzymes a chemotaxonomic aid amongAspergillus taxa: (3) The identity of the xerophylic speciesA. penicillioides in subgenusAspergillus sectionRestricti. J. Gen. Appl. Microbiol.42: 235–247.

    CAS  Google Scholar 

  • Taylor, J. W. 1993. A contemporary view of the holomorph: Nucleic acid sequence and computer databases are changing fungal classification. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 3–13. CAB Intern., Wallingford.

    Google Scholar 

  • Taylor, J. W. 1995. Making the Deuteromycota redundant: a practical integration of mitosporic and meiosporic fungi. Can. J. Bot.73 (Suppl. 1): S754-S759.

    Google Scholar 

  • Taylor, J.W. 1998. Molecular systematics and evolution. Abst. 6th Intern. Mycol. Congr. (IMC6), Jerusalem, Israel, p. 129.

  • Taylor, J. W. and Bowman, B. H. 1993.Pneumocystis carinii and the ustomycetous red yeast fungi. Mol. Microbiol.8: 425–426.

    PubMed  CAS  Google Scholar 

  • Taylor, J. W., Swann, E. C. and Berbee, M. L. 1994. Molecular evolution of ascomycete fungi: Phylogeny and conflict. In: Ascomycete systematics: Problems and perspective in the nineties, (ed. by Hawksworth, D. L.), pp. 201–212. Plenum Press, New York.

    Google Scholar 

  • Tehler, A. 1988. A cladistic outline of the Eumycota. Cladistics4: 227–277.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res.22: 4673–4680.

    PubMed  CAS  Google Scholar 

  • Tubaki, K. 1957. Biological and cultural studies of three species ofProtomyces. Mycologia49: 44–54.

    Google Scholar 

  • Tubaki, K. 1978.Taphrina wiesneri (Ráthay) Mix. In: Kinruizukan (Compendium of fungi), Part 1, (ed. by Udagawa, S., Tubaki, K. et al.), pp. 329–330. Kodansha, Tokyo. (In Japanese).

    Google Scholar 

  • Tubaki, K. and Yokoyama, T. 1971. Cultural aspects ofGraphiola phoenicis. Mycopathol. Mycol. Appl.43: 49–60.

    Article  Google Scholar 

  • Untereiner, W., Straus, N. A. and Malloch, D. 1995. A molecular-morphotaxonomic approach to the systematics of the Herpotrichiellaceae and allied black yeasts. Mycol. Res.99: 897–913.

    Article  CAS  Google Scholar 

  • Van der Auwere, G., de Baere, R., van der Peer, Y., de Rijk, P. van den Broeck, I. and de Wachter, R. 1995. The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences ofHyphochytrium catenoides. Mol. Biol. Evol.12: 671–678.

    Google Scholar 

  • Van Eijk, G. W. and Roeymans, H. J. 1982. Distribution of carotenoids and sterols in relation to the taxonomy ofTaphrina andProtomyces. Antonie van Leeuwenhoek48: 257–264.

    Article  PubMed  Google Scholar 

  • Veuthey, A.-L. and Bittar, G. 1998. Phylogenetic relationships of Fungi, Plantae, and Animalia inferred from homologous comparison of ribosomal proteins. J. Mol. Evol.47: 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, H. J. 1964. Distribution of lysine pathways among fungi: evolutionary implication. Amer. Naturalist98: 435–446.

    Article  CAS  Google Scholar 

  • Vogel, H. J. 1965. Lysine biosynthesis and evolution: fungi, gymnosperms and angiosperms. In: Evolving genes and proteins, (ed. by Bryson, V. and Vogel, H. J.), pp. 25–40. Academic Press, New York.

    Google Scholar 

  • Vogler, D. R. and Bruns, T. D. 1993. Use of molecular characters to identify holomorphs: An example from the rust genusCronartium. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 3–13. CAB International, Wallingford.

    Google Scholar 

  • Wainright, P. O., Hinkle, G., Sogin, M. L. and Stickel, S. K. 1993. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science260: 340–342.

    PubMed  CAS  Google Scholar 

  • Wakefield, A. E., Hopkin, J. M., Bridge P. D. and Hawksworth, D. L. 1993.Pneumocystis carinii and the ustomycetous red yeast fungi. Mol. Microbiol.8:426–427.

    CAS  Google Scholar 

  • Walker, W. F. 1984. 5S ribosomal RNA sequences from Zygomycotina and evolutionary implications. Syst. Appl. Microbiol.5: 448–456.

    CAS  Google Scholar 

  • Walker, W. F. and Doolittle, W. F. 1982. Redividing the basidiomycetes on the basis of 5S rRNA sequences. Nature299: 723–724.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, J., Hori, H., Tanabe, K. and Nakamura, Y. 1989. Phylogenetic association ofPneumocystis carinii with the ‘Rhizopoda/Myxomycota/Zygomycota group’ indicated by comparison of 5S ribosomal RNA sequences, Mol. Biochem. Parasitol.32: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi, T., Miyadoh, S. and S. Udagawa. 1993.Chromocleista, a new cleistothecial genus with aGeosmithia anamorph. Trans. Mycol. Soc. Japan34: 101–108.

    Google Scholar 

  • Yamada, Y. 1994. The 18S and 26S rRNA partial base sequencings of yeasts and yeast-like fungi from the phylogenetic and taxonomic points of view. Nippon Kingakukai Kaiho35: 239–252. (In Japanese).

    CAS  Google Scholar 

  • Yamatoya, K., Sugiyama, J. and Kuraishi, H. 1990. Electrophoretic comparison of enzymes as a chemotaxonomic aid amongAspergillus taxa: (2)Aspergillus sect.Flavi. In: Modern concepts inPenicillium andAspergillus classification, (ed. by Samson, R. A. and Pitt, J. I.), pp. 395–405. Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of the 2nd Mycological Society of Japan's Excellent Achievement Award, 1998; the awarding lecture was given at the 42nd Annual Meeting of the Mycological Society of Japan, 16 May, 1998, Kyoto University, Kyoto. This review is based mainly on the publications intended for the Award.

About this article

Cite this article

Sugiyama, J. Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39, 487–511 (1998). https://doi.org/10.1007/BF02460912

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460912

Key Words

Navigation