Skip to main content
Log in

Archiascomycetes: detection of a major new lineage within the Ascomycota

  • Original Papers
  • Published:
Mycoscience

Abstract

For phylogenetic analysis of the higher fungi, we sequenced the nuclear small subunit rRNA (18S rRNA) gene fromTaphrina populina, the type species of the genusTaphrina, andProtomyces lactucae-debilis. The molecular phylogeny inferred from these 2 sequences and 75 sequences from the DNA data bank divided the Ascomycota into three major lineages: the hemiascomycetes, the euascomycetes, and the archiascomycetes, newly described herein. The former two lineages are monophyletic, whereas the archiascomycetes, which originated first and are comprised ofTaphrina, Protomyces, Saitoella, Schizosaccharomyces, andPneumocystis, may not be monophyletic. Among the archiascomycetes, theTaphrina/Protomyces branch is monophyletic. Confirmation of the archiascomycetes as a monophyletic taxonomic class will require comparison of additional genetically defined characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ainsworth, G. C. 1973. Introduction and keys to higher taxa. In: “The fungi,” vol. 4 (ed. by Ainsworth, G. C., Sparrow, F. K. and Sussman, A. S.), pp. 1–7. Academic Press, New York.

    Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1992a. Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequences. Mol. Biol. Evol.9: 278–284.

    PubMed  Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1992b. Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol. Phylogenet. Evol.1: 59–71.

    PubMed  Google Scholar 

  • Berbee, M. L., and Taylor, J. W. 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot.71: 1114–1127.

    Google Scholar 

  • Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S.-D. and White, T. J. 1992. Molecular evolution of the fungi: Relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol. Biol. Evol.9: 285–296.

    PubMed  Google Scholar 

  • Bruns, T. D., Vilgalys, R., Barns, S. M., Gonzalez, D., Hibbett, D. S., Lane, D. J., Simon, L., Stickel, S., Szaro, T. M., Weisburg, W. G. and Sogin, M. L. 1992. Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences. Mol. Phylogenet. Evol.1: 231–241.

    Article  PubMed  Google Scholar 

  • Bruns, T. D., White, T. J. and Taylor, J. W. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Syst.22: 525–564.

    Google Scholar 

  • De Wachter, R., Neefs, J. M., Goris, A. and Van de Peer, Y. 1992. The gene coding for small ribosomal subunit RNA in the basidiomyceteUstilago maydis contains a group I intron. Nucleic Acids Res.20: 1251–1257.

    PubMed  Google Scholar 

  • Edman, J. C., Kovacs, J. C., Masur, H., Santi, D. V., Elwood, H. J. and Sogin, M. L. 1988. Ribosomal RNA sequence showsPneumocystis carinii to be a member of the Fungi. Nature334: 519–522.

    PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.

    Google Scholar 

  • Hendriks, L., De Baere, R., Van de Peer, Y., Neefs, J., Goris, A. and De Wachter, R. 1991a. The evolutionary position of the rhodophytePorphyra umbilicalis and the BasidiomyceteLeucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J. Mol. Evol.32: 167–177.

    PubMed  Google Scholar 

  • Hendriks, L., Goris, A., De Bruyn, K. and De Wachter, R. 1990. The small ribosomal subunit RNA sequence of the yeastTorulaspora delbrueckii. Nucleic Acids Res.18: 4611.

    PubMed  Google Scholar 

  • Hendriks, L., Goris, A., Neefs, J.-M., Van de Peer, Y., Hennebert, G. L. and De Wachter, R. 1989. The Nucleotide sequence of the small ribosomal subunit RNA of the yeastCandida albicans and the evolutionary position of the fungi among the eukaryotes. System. Appl. Microbiol.12: 223–229.

    Google Scholar 

  • Hendriks, L., Goris, A., Van de Peer, Y., Neefs, J.-M., Vancanneyt, M., Kersters, K., Berny, J.-F., Hennebert, G. L. and De Wachter, R. 1992. Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences. Syst. Appl. Microbiol.15: 98–104.

    Google Scholar 

  • Hendriks, L., Goris, A., Van de Peer, Y., Neefs, J.-M., Vancanneyt, M., Kersters, K., Hennebert, G. L. and De Wachter, R. 1991b. Phylogenetic analysis of five medically importantCandida species as deduced on the basis of small ribosomal subunit RNA sequences. J. Gen. Microbiol.137: 1223–1230.

    Google Scholar 

  • Higgins, D. G., Bleasby, A. J. and Fuchs, R. 1992. CLUSTAL V: Improved software for multiple sequence alignment. Comput. Applic. Biosci.8: 189–191.

    Google Scholar 

  • Illingworth, C. A., Andrews, J. H., Bibeau, C. and Sogin, M. L. 1991. Phylogenetic placement ofAthelia bombacina, Aureobasidium pullulans, andColletotrichum gloeosporioides inferred from sequence comparisons of small-subunit ribosomal RNAs. Exp. Mycol.15: 65–75.

    Article  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.

    Article  PubMed  Google Scholar 

  • Maleszka, R. and Clark-Walker, G. D. 1990. Sequence of the gene for the cytoplasmic ribosomal RNA small subunit fromKluyveromyces lactis. Nucleic Acids Res.18: 1889.

    PubMed  Google Scholar 

  • Mankin, A. S., Skryabin, K. G. and Rubtsov, P. M. 1986. Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene44: 143–145.

    Article  PubMed  Google Scholar 

  • Neefs, J.-M., Van de Peer, Y., De Rijk, P., Goris, A. and De Wachter, R. 1991. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res.19: 1987–2015.

    PubMed  Google Scholar 

  • Nishida, H., Blanz, P. A. and Sugiyama, J. 1993. The higher fungusProtomyces inouyei has two group I introns in the 18S rRNA gene. J. Mol. Evol.37: 25–28.

    Article  PubMed  Google Scholar 

  • Nishida, H. and Sugiyama, J. 1993. Phylogenetic relationships amongTaphrina, Saitoella, and other higher fungi. Mol. Biol. Evol.10: 431–436.

    PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  Google Scholar 

  • Sogin, M. L., Miotto, K. and Miller, L. 1986. Primary structure of theNeurospora crassa small subunit ribosomal RNA coding region. Nucleic Acids Res.14: 9540.

    PubMed  Google Scholar 

  • Sugiyama, J., Nishida, H. and Suh, S.-O. 1993. The paradigm of fungal diagnoses and descriptions in the era of molecular systematics:Saitoella complicata as an example. In: “The fungal holomorph; miotic, meiotic and pleomorphic speciation in fungal systematics,” (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 261–269. CAB International, Wallingford.

    Google Scholar 

  • Swann, E. C. and Taylor, J. W. 1993. Higher taxa of basidiomycetes: An 18S rRNA gene perspective. Mycologia85: 923–936.

    Google Scholar 

  • Suh, S.-O. and Sugiyama, J. 1993. Phylogeny among the basidiomycetous yeasts inferred from small subunit ribosomal DNA sequence. J. Gen. Microbiol.139: 1595–1598.

    PubMed  Google Scholar 

  • Taylor, J. W. and Bowman, B. H. 1993.Pneumocystis carinii and the ustomycetous red yeast fungi. Mol. Microbiol.8: 425–426.

    PubMed  Google Scholar 

  • Taylor, J. W. and Bowman, B. H., Berbee, M. L., and White, T. J. 1993. Fungal model organisms: Phylogenetics ofSaccharomyces, Aspergillus, andNeurospora. Syst. Biol.42: 440–457.

    Google Scholar 

  • Taylor, J. W., Swann, E. C. and Berbee, M. L. 1994. Molecular evolution of ascomycete fungi: Phylogeney and conflict. In: “Ascomycete systematics: problems and perspectives in the nineties,” (ed. by D. L. Hawksworth), pp. 201–212. Plenum Press, New York.

    Google Scholar 

  • Tubaki, K. 1957. Biological and cultural studies of three species ofProtomyces. Mycologia49: 44–54.

    Google Scholar 

  • Van de Peer, Y., Hendriks, L., Goris, A., Neefs, J.-M., Vancanneyt, M., Kersters, K., Berny, J.-F., Hennebert, G. L. and De Wachter, R. 1992. Evolution of basidiomycetous yeasts as deduced from small ribosomal subunit RNA sequences. System. Appl. Microbiol.15: 250–258.

    Google Scholar 

  • Wakefield, A. E., Hopkin, J. M., Bridge, P. D. and Hawksworth, D. L. 1993.Pneumocystis carini and the ustomycetous red yeast fungi. Mol. Microbiol.8: 426–427.

    Google Scholar 

  • Wakefield, A. E., Peters, S. E., Banerji, S., Bridge, P. D., Hall, G. S., Hawksworth, D. L., Guiver, L. A., Allen, A. G. and Hopkin, J. M. 1992.Pneumocystis carinii shows DNA homology with the ustomycetous red yeast fungi. Mol. Microbiol.6: 1903–1911.

    PubMed  Google Scholar 

  • Watanabe, J., Hori, H., Tanabe, K. and Nakamura, Y. 1989. Phylogenetic association ofPneumocystis carinii with the ‘Rhizopoda/Myxomycota/Zygomycota group’ indicated by comparison of 5S ribosomal RNA sequences. Mol. Biochem. Parasitol.32: 163–168.

    Article  PubMed  Google Scholar 

  • Wong, O. C. and Clark-Walker, G. D. 1990. Sequence of the gene for the cytoplasmic ribosomal RNA small subunit fromCandida (Torulopsis)glabrata. Nucleic Acids Res.18: 1888.

    PubMed  Google Scholar 

  • Yoshida, Y. 1989. Ultrastructural studies ofPneumocystis carinii. J. Protozool.36: 53–60.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants 05454030 from the Ministry of Education, Science, and Culture of Japan (to J. S.) and 4369 from the Japan Society for the Promotion of Science Fellowship Programs (to H. N.).

About this article

Cite this article

Nishida, H., Sugiyama, J. Archiascomycetes: detection of a major new lineage within the Ascomycota. Mycoscience 35, 361–366 (1994). https://doi.org/10.1007/BF02268506

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268506

Key Words

Navigation