Skip to main content
Log in

Consensus sequences based on plurality rule

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We apply concepts of social choice theory, in particular those concerning median and plurality rules, to investigate the problem of finding a consensus of aligned molecular sequences. Our model of consensus permits consensus elements at each aligned position to denote ambiguity codes if several alternatives are equally-preferred candidates for consensus. Our results concern plurality rules which are median rules are characterized by the Condorcet properties, and are efficient to calculate. Our approach is axiomatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bains, W. 1986. MULTAN: a program to align multiple DNA sequencesNucl. Acids Res. 14, 159–177.

    Google Scholar 

  • Barthélemy, J.-P. and F. R. McMorris. 1986. The median procedure forn-trees.J. Classification 3 329–334.

    Article  MATH  MathSciNet  Google Scholar 

  • Barthélemy, J.-P. and B. Monjardet. 1981. The median procedure, in cluster analysis and social choice theory.Math. Soc. Sci. 1, 235–267.

    Article  MATH  Google Scholar 

  • Campbell, D. E. 1982. On the derivation of majority rule.Theor. Decision 14, 133–140.

    Article  MATH  Google Scholar 

  • Day, W. H. E. 1988. Consensus methods as tools for data analysis. InClassification and Related Methods of Data Analysis, H. H. Bock (Ed.), pp. 317–324. Amsterdam: Elsevier.

    Google Scholar 

  • Day, W. H. E. and F. R. McMorris. 1985. A formalization of consensus index methods.Bull. math. Biol. 47, 215–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Fishburn, P. C. 1977. Condorcet social choice functions.SIAM J. appl. Math. 33, 469–489.

    Article  MATH  MathSciNet  Google Scholar 

  • Garey, M. R. and D. S. Johnson. 1979.Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman.

    Google Scholar 

  • Kemeny, J. G. 1959. Mathematics without numbers.Daedalus 88, 577–591.

    Google Scholar 

  • Kemeny, J. G. and J. L. Snell. 1962. Preference rankings: an axiomatic approach. InMathematical Models in the Social Sciences Ch. 2, pp. 9–23. New York: Ginn.

    Google Scholar 

  • Levenglick, A. 1975. Fair and reasonable election systems.Behav. Sci. 20, 34–46.

    Google Scholar 

  • Maier, D. 1978. The complexity of some problems on subsequences and supersequences.J. Assoc. Comput. Mach. 25, 322–336.

    MATH  MathSciNet  Google Scholar 

  • Margush, T. and F. R. McMorris. 1981. Consensusn-trees.Bull. math. Biol. 43, 239–244.

    Article  MATH  MathSciNet  Google Scholar 

  • May, K. O. 1952. A set of independent, necessary and sufficient conditions for simple majority decision.Econometrica 20, 680–684.

    Article  MATH  MathSciNet  Google Scholar 

  • McMorris, F. R. and D. Neumann. 1983. Consensus functions defined on trees.Math. Soc. Sci. 4, 131–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, G. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson'sFamilles des Plantes (1763–1764).,Syst. Zool. 28, 1–21.

    Article  Google Scholar 

  • Richelson, J. 1975. A comparative analysis of social choice functions,Behav. Sci. 20, 331–337.

    Google Scholar 

  • Richelson, J. 1978. A characterization theorem for the plurality rule.J. Econ. Theory 19, 548–550.

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, F. S. 1991. Characterizations of the plurality function.Math. Soc. Sci. 21, 101–127.

    Article  MATH  Google Scholar 

  • Sokal, R. R. and F. J. Rohlf. 1981. Taxonomic congruence in the Leptopodomorpha reexamined.Syst. Zool. 30, 309–325.

    Article  Google Scholar 

  • Waterman, M. S. 1986. Multiple sequence alignment by consensus.Nucl. Acids Res. 14, 9095–9102.

    MathSciNet  Google Scholar 

  • Waterman, M. S. 1989a. Consensus patterns in sequences. InMathematical Methods for DNA Sequences, M. S. Waterman (Ed.), pp. 93–115. Boca Raton: CRC.

    Google Scholar 

  • Waterman, M. S. 1989b. Sequence alignments. InMathematical Methods for DNA Sequences, M. S. Waterman (Ed.), pp. 53–92. Boca Raton: CRC.

    Google Scholar 

  • Waterman, M. S., R. Arratia and D. J. Galas. 1984. Pattern recognition in several sequences: consensus and alignment.Bull. math. Biol. 46, 515–527.

    Article  MATH  MathSciNet  Google Scholar 

  • Young, H. P. 1974. An axiomatization of Borda's rule.J. Econ. Theory 9, 43–52.

    Article  Google Scholar 

  • Young, H. P. 1975. Social choice scoring functions.SIAM J. appl. Math. 28, 824–838.

    Article  MATH  MathSciNet  Google Scholar 

  • Young, H. P. and A. Levenglick, 1978. A consistent extension of Condorcet's election principle.SIAM J. appl. Math. 35, 285–300.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, W.H.E., McMorris, F.R. Consensus sequences based on plurality rule. Bltn Mathcal Biology 54, 1057–1068 (1992). https://doi.org/10.1007/BF02460666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460666

Keywords

Navigation