Skip to main content
Log in

Myocardial Perfusion: Characteristics of Distal Intramyocardial Arteriolar Trees

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A combination of experimental, theoretical, and imaging methodologies is used to examine the hierarchical structure and function of intramyocardial arteriolar trees in porcine hearts to provide a window onto a region of myocardial microvasculature which has been difficult to fully explore so far. A total of 66 microvascular trees from 6 isolated myocardial specimens were analyzed, with a cumulative number of 2438 arteriolar branches greater than or equal to 40 μm lumen diameter. The distribution of flow rates within each tree was derived from an assumed power law relationship for that tree between the diameter of vessel segments and flow rates that are consistent with that power law and subject to conservation of mass along hierarchical structure of the tree. The results indicate that the power law index increases at levels of arteriolar vasculature closer to the capillary level, consistent with a concomitant decrease in shear stress acting on endothelial tissue. These results resolve a long standing predicament which could not be resolved previously because of lack of data about the 3D, interconnected, arterioles. In the context of myocardial perfusion, the results indicate that the coefficient of variation of flow rate in pre-capillary distal arterioles is high, suggesting that heterogeneity of flow rate in these arterioles is not entirely random but may be due at least in part to active control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Austin, R. E. Jr., G. S. Aldea, D. L. Coggins, A. E. Flynn, and J. I. E. Hoffman. Profound spatial heterogeneity of coronary reserve. Circ. Res. 67:319–331, 1990.

  2. Bassingthwaighte, J. B., J. H. G. M. Van Beek, and R. B. King. Fractal branchings: the basis of myocardial flow heterogeneities. Ann. N.Y Acad. Sci. 591:392–401, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Feldkamp, L. A., L. C. David, and J. W. Kress. Practical cone-beam algorithm. J. Optical Soc. Am. A: Optics Image Sci. Vision 1:612–619, 1984.

  4. Ho, Y., B. Kaimovitz, Y. Lanir, T. Wischgool, J. I. E. Hoffman, and G. S. Kassab. Biophysical model of the spatial heterogeneity of myocardial flow. Biophys. J. 96:4035–4043, 2009.

    Article  Google Scholar 

  5. Hutchins, G. M., M. M. Miner, and J. K. Boitnott. Vessel caliber and branch-angle of human coronary artery branch-points. Circ. Res. 38:572–576, 1976.

    Article  CAS  PubMed  Google Scholar 

  6. Huveneers, S., M. J. Daemen, and P. L. Hordijk. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res. 116(5):895–908, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Jorgensen, S. M., O. Demirkaya, and E. L. Ritman. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with x-ray micro-CT. Am. J. Physiol. 275(Heart Circ Physiol) 44:H1103–H1114, 1998.

  8. Kaimovitz, B., Y. Huo, Y. Lanir, and G. S. Kassab. Diameter asymmetry of porcine coronary arterial tree: structural and functional implications. Am. J. Physiol. Heart Circ. Physiol. 294:H714–H723, 2008.

  9. Kline, T. L., M. Zamir, and E. L. Ritman. Accuracy of microvascular measurements obtained from micro-CT images. Ann. Biomed. Eng. 38:2851–2864, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kline, T. L., M. Zamir, and E. L. Ritman. Relating function to branching geometry: a micro-CT study of the hepatic artery, portal vein, and biliary tree. Cells Tissues Organs 195:431–442, 2011.

    Article  Google Scholar 

  11. Malyar, N. M., M. Goessl, P. E. Beighley, and E. L. Ritman. Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation—a micro-CT based analysis. Am. J. Physiol: Heart Circ. Physiol. 286:H2386–H2392, 2004.

    CAS  Google Scholar 

  12. Marxen, M., J. G. Sled, L. X. Yu, C. Paget, and R. M. Henkelman. Comparing microsphere deposition and flow modeling in 3D vascular trees. Am. J. Physiol. Heart Circ. Physiol. 291:H2136–H2141, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Mayrovitz, H. N., and J. Roy. Microvascular blood flow evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. 245:H1031–H1038, 1983.

    CAS  PubMed  Google Scholar 

  14. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Nat Acad. Sci. 12:207–214, 1926.

  15. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Relationship between structural and hemodynamic heterogeneity in microvascular networks. Am. J. Physiol. Heart Circ. Physiol. 270:H545–H553, 1996.

    CAS  Google Scholar 

  16. Robb, R. A., P. B. Heffernan, J. J. Camp, and D. P. Hanson. A workshop for interactive display and quantitative analysis of 3-D and 4-D biomedical images. In: Proceedings of the Tenth Annual Sym. on Computer Applications in Medical Care. IEEE, 1986, pp. 240–256.

  17. Rodbard, S. Vascular caliber. Cardiology 60:4–49, 1975.

    Article  CAS  PubMed  Google Scholar 

  18. Roy, A. G., and M. J. Woldenberg. A generalization of the optimal models of arterial branching. Bull. Math. Biol. 44:349–360, 1982.

    Article  CAS  PubMed  Google Scholar 

  19. Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78(4):431–453, 1981.

    Article  CAS  PubMed  Google Scholar 

  20. Van Bavel, E. R., and J. A. E. Spaan. Branching patterns in porcine coronary arterial tree. Estim. Flow Heterog. Circ. Res. 67:319–331, 1990.

    Google Scholar 

  21. Woldenberg, M. J., and K. Horsfield. Finding the optimal length for three branches at a junction. J. Theor. Biol. 104:301–318, 1983.

    Article  CAS  PubMed  Google Scholar 

  22. Zamir, M. Tree structure and branching characteristics of the right coronary artery in a right-dominant human heart. Can. J. Cardiol. 12:593–599, 1996.

    CAS  PubMed  Google Scholar 

  23. Zamir, M. Mechanics of blood supply to the heart: wave reflection effects in a right coronary artery. Proc. R. Soc. Lond. B Biol. Sci. 265:439–444, 1998.

    Article  CAS  Google Scholar 

  24. Zamir, M. The Physics of Pulsatile Flow. New York: Springer-Verlag, 2000; (220 pp).

    Book  Google Scholar 

Download references

Acknowledgments

This work was in part funded by NIH Grant, HL117539. The authors would like to thank Ms. Kay D. Parker, Steve Krage and Dr. Jodie A. Christner for their help with the instrumentation and CT scans of the animals, also Ms. Delories Darling for her help with formatting the manuscript.

Conflict of interest

The authors have no financial conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik L. Ritman.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamir, M., Vercnocke, A.J., Edwards, P.K. et al. Myocardial Perfusion: Characteristics of Distal Intramyocardial Arteriolar Trees. Ann Biomed Eng 43, 2771–2779 (2015). https://doi.org/10.1007/s10439-015-1325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1325-4

Keywords

Navigation