Skip to main content
Log in

Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Early work in the field of biomechanics employed rigorous application of the principles of mechanics to the study of the macroscopic structural response of tissues to applied loads. Interest in the functional response of tissues to mechanical stimulation has lead researchers to study the biochemical responses of cells to mechanical loading. Characterization of the experimental system (i.e., specimen geometry and boundary conditions) is no less important on the microscopic scale of the cell than it is for macroscopic tissue testing. We outline a method for appropriate characterization of cell deformation in a cell culture model; describe a system for applying a uniform, isotropic strain field to cells in culture; and demonstrate a dependence of cell deformation on morphology and distribution of adhesion sites. Cultured vascular smooth-muscle cells were mechanically deformed by applying an isotropic strain to the compliant substrate to which they were adhered. The state of strain in the cells was determined by measurement of the displacements of fluorescent microspheres attached to the cell surface. The magnitude and orientation of principal strains were found to vary spatially and temporally and to depend on cell morphology. These results show that cell strain can be highly variable and emphasize the need to characterize both the loading conditions and the actual cellular deformation in this type of experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abercrombie, M.; Heaysman, J.E.M.; Pegrum, S.M. The locomotion of fibroblasts in culture IV. Electron microscopy of the leading lamella. Exp. Cell Res. 67:359–367; 1971.

    Article  CAS  PubMed  Google Scholar 

  2. Abercrombie, M.; Dunn, G.A., Adhesions of fibroblasts of substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92:57–62; 1975.

    Article  CAS  PubMed  Google Scholar 

  3. Boock, R.; Thibault, L., An experimental and analytical approach to the development of a range of neurovascular trauma. In: International Research Committee on Biomechanics of Impact. Lyon, France: IRCOBI, 1990.

    Google Scholar 

  4. Arnold, J.R.; Boor, P.J. Improved transmission electron microscopy (TEM) of cultured cells through a “floating sheet” method. J. Ultrastruct. Mol. Res. 94:30–36; 1986.

    CAS  Google Scholar 

  5. Burridge, K.; Fath, K.; Kelly, T.; Nuckolls, G.; Turner, C. Focal adhesions. Ann. Rev. Cell Biol. 4:487–525; 1988.

    CAS  PubMed  Google Scholar 

  6. Dartsch, P.; Betz, E. Response of cultured endothelial cells to mechanical stimulation. Basic Res. Cardiol. 84:268–281; 1989.

    Article  CAS  PubMed  Google Scholar 

  7. Dartsch, P.; Hammerle, H. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41:339–346; 1986.

    CAS  PubMed  Google Scholar 

  8. Dartsch, P.C.; Hämmerle, H.; Betz, E. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anat. 125:108–113; 1986.

    CAS  PubMed  Google Scholar 

  9. Fischer, G.; Swain, M.; Cherian, K. Pulsatile distension and vascular collagen synthesis in the rabbit. Blood Vessels 17:216–220; 1980.

    CAS  PubMed  Google Scholar 

  10. Fischer, G.M.; Llaurado, J.G. Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ. Res. 19:394–399; 1966.

    CAS  PubMed  Google Scholar 

  11. Folkow, B.; HallBäck, M.; Lundgren Y.; Sivertsson, R.; Weiss, L. Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in spontaneously hypertensive rats. Circ Res. 32-33 (suppl. I):I-2–I-16; 1973.

    Google Scholar 

  12. Fung, Y.C. Foundations of solid mechanics. In: Fung, Y.C., ed. Prentice-Hall International Series in Dynamics. Englewood Cliffs, NJ: Prentice-Hall; 1965: p. 525.

    Google Scholar 

  13. Fung, Y.C.; Liu, S.Q. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349; 1989.

    CAS  PubMed  Google Scholar 

  14. Fung, Y.C.; Liu, S.Q. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70:2455–2470; 1991.

    CAS  PubMed  Google Scholar 

  15. Gorfien, S.F.; Howard, P.S.; Myers, J.C.; Macarak, E.J. Cyclic biaxial strain of pulmonary artery endothelial cells causes an increase in cell layer-associated fibronectin. Am. J. Respir. Cell Mol. Biol. 3:421–429; 1990.

    CAS  PubMed  Google Scholar 

  16. Gorfien, S.F.; Winston, F.K.; Thibault, L.E.; Macarak, E.J. Effects of biaxial deformation on pulmonary artery endothelial cells. J. Cell Physiol. 139:492–500; 1989.

    Article  CAS  PubMed  Google Scholar 

  17. Hoffman, R. The modulation contrast microscope: principles and performance. J. Microsc. 110:205–222; 1977.

    Google Scholar 

  18. Jamney, P.A.; Hvidt, S.; Lamb, J.; Stossel, T.P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345:89–92; 1990.

    Google Scholar 

  19. Jamney, P.A.; Hvidt, S.; Peetermans, J.; Lamb, J.; Ferry, J.D.; Stossel, T.P. Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry 27:8218–8227; 1988.

    Google Scholar 

  20. Leung, D.; Glagov, S.; Mathews, M., Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477; 1976.

    CAS  PubMed  Google Scholar 

  21. Murray, T.R.; Marshall, B.E.; Macarak, E.J. Contraction of vascular smooth muscle in cell culture. J. Cell Physiol. 143:26–38; 1990.

    Article  CAS  PubMed  Google Scholar 

  22. Opas, M., The transmission of forces between cells and their environment. In: Breiter-Hahn, J.; Anderson, O.R.; Reif, W.-E., eds. Cyto-mechanics. New York: Springer-Verlag; 1987: pp. 273–285.

    Google Scholar 

  23. Pease, D.C.; Paule, W.J. Electron microscopy of elastic arteries; the thoracic aorta of the rat. J. Ultrastruct. Res. 3:469–483; 1960.

    CAS  PubMed  Google Scholar 

  24. Shirinsky, V.P.; Antonov, A.S.; Birukov, K.G.; Sobolevsky, A.V.; Romanov, Y.A.; Kabaeva, N.V.; Antonova, G.N.; Smirnov, V.N., Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109:331–339; 1989.

    Article  CAS  PubMed  Google Scholar 

  25. Simon, S.I.; Schmid-Schönbein, G.W.. Cytoplasmic strains and strain rates in motile polymorphonuclear leukocytes. Biophys. J. 58:319–332; 1990.

    CAS  PubMed  Google Scholar 

  26. Terracio, L.; Miller, B.; Borg, T.K. Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev. Biol. 24:53–58; 1988.

    CAS  PubMed  Google Scholar 

  27. Thibault, L.; Fry, D. Mechanical characterization of membrane-like biological tissue. J. Biomech. Eng. 105:175–182; 1983.

    Google Scholar 

  28. Vandenburgh, H. A computerized mechanical cell stimulator for tissue culture: effects on skeltal muscle organogenesis. In Vitro Cell Dev. Biol. 24:609–619; 1988.

    CAS  PubMed  Google Scholar 

  29. Vinall, P.E.; Simeone, F.A. In vitro myogenic autoregulation in cerebral blood vessels. In: Heistad, D.D.; Marcus, M.L., eds. Cerebral blood flow: effects of nerves and neurotransmitters New York: Elsevier North Holland; 1982; pp. 57–64.

    Google Scholar 

  30. Vinall, P.E.; Simeone, F.A. Whole-mounted pressurized in vitro model for the study of cerebral arterial mechanics. Blood Vessels 24:51–62; 1987.

    CAS  PubMed  Google Scholar 

  31. Winston, F.K.; Macarak, E.J.; Gorfien, S.F.; Thibault, L.E. A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67:397–405; 1989.

    CAS  PubMed  Google Scholar 

  32. Zaner, K.S.; Hartwig, J.H. The effect of filament shortening on the mechanical properties of gel-filtered actin. J. Biol. Chem. 263:4532–4536; 1988.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbee, K.A., Macarak, E.J. & Thibault, L.E. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann Biomed Eng 22, 14–22 (1994). https://doi.org/10.1007/BF02368218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368218

Keywords

Navigation