Skip to main content

Innovations in Measuring Cellular Mechanics

  • Chapter
  • First Online:
Vascular Engineering

Abstract

This article describes several novel mechanical methods for elucidating cellular responses to different types of mechanical loading (adhesive, pulling, pushing, shearing, and stretching forces). Understanding how cells deform and transmit stresses into the cell is important for gene expression, cytoskeletal remodeling, and focal adhesion reorganization and crucial for a variety of higher fundamental cell functions including cell division, motility, and differentiation. Introducing these unique methods of measuring and understanding cellular mechanics, therefore, provides a valuable platform for cell biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93–99

    Article  CAS  PubMed  Google Scholar 

  • Alonso JL, Goldmann WH (2012) Influence of divalent cations on the cytoskeletal dynamics of K562 cells determined by nano-scale bead tracking. Biochem Biophys Res Commun 421:245–248

    Article  CAS  PubMed  Google Scholar 

  • An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ (2002) Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 283:C792–C801

    Article  CAS  PubMed  Google Scholar 

  • An SS, Fabry B, Mellema M, Bursac P, Gerthoffer WT, Kayyali US, Gaestel M, Shore SS, Fredberg JJ (2004) Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. J Appl Physiol 96:1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    Article  CAS  PubMed  Google Scholar 

  • Bonakdar N, Lautscham LA, Czonstke M, Koch TM, Mainka A, Jungbauer T, Goldmann WH, Schröder R, Fabry B (2012) Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem Biophys Res Commun 419:703–707

    Article  CAS  PubMed  Google Scholar 

  • Bonakdar N, Schilling A, Lennert P, Spörrer M, Gerum RC, Alonso JL, Goldmann WH (2014) Measuring mechanical properties in cells: three easy methods for biologists. Cell Biol Int 38:1227–1232

    Article  PubMed  Google Scholar 

  • Bonakdar N, Schilling A, Sp­rrer M, Lennert P, Mainka A, Winter L, Walko G, Wiche G, Fabry B, Goldmann WH (2015) Determining the mechanical properties of plectin in mouse myoblasts and keratinocytes. Exp Cell Res 331:331–337

    Google Scholar 

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282:C595–C605

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Granek R, Elbaum M (2002) Diffusion and directed motion in cellular transport. Phys Rev E Stat Nonlinear Soft Matter Phys 66:011916

    Article  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin- cytoskeleton linkages. Cell 88:39–48

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Arai SF, Brain JD (1979) Smoking impairs long-term dust clearance from the lung. Science 204:514–517

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm. Exp Cell Res 1:37–80

    Article  Google Scholar 

  • Daily B, Elson EL, Zahalak GL (1984) Cell poking. Determination of the eleastic area compressibility modulus of the erythrocyte membrane. Biophys J 45:671–82

    Google Scholar 

  • Deng L, Fairbank NJ, Fabry B, Smith PG, Maksym GN (2004) Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 287:C440–C448

    Article  CAS  PubMed  Google Scholar 

  • Duszyk M, Schwab B 3rd, Zahalak GL, Qian H, Elson EL (1989) Cell poking: quantitative analysis of indentation of thick viscoelastic layers. Biophys J 55:683–90

    Google Scholar 

  • Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001a) Scaling the microrheology of living cells. Phys Rev Lett 87:148102

    Article  CAS  PubMed  Google Scholar 

  • Fabry B, Maksym GN, Shore SA, Moore PE, Panettieri RA Jr, Butler JP, Fredberg JJ (2001b) Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J Appl Physiol 91:986–994

    CAS  PubMed  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback AN, Millet EJ, Fredberg JJ (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E 68:041914

    Article  Google Scholar 

  • Fernandez P, Heymann L, Ott A, Aksel N, Pullarkat PA (2007) Shear rheology of a cell monolayer. New J Phys 9:1–29

    Article  Google Scholar 

  • Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305

    Article  CAS  PubMed  Google Scholar 

  • Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmann WH (2000) Mechanical manipulation of animal cells: cell indentation. Biotechnol Lett 22:431–435

    Article  CAS  Google Scholar 

  • Goldmann WH (2002) Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26:313–317

    Article  CAS  PubMed  Google Scholar 

  • Goldmann WH, Ezzell RM (1996) Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp Cell Res 226:234–237

    Article  CAS  PubMed  Google Scholar 

  • Goldmann WH, Galneder R, Ludwig M, Xu W, Adamson ED, Wang N, Ezzell RM (1998) Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp Cell Res 239:235–242

    Article  CAS  PubMed  Google Scholar 

  • Goldmann WH, Alonso JL et al (2000) Cell shape control and mechanical signaling through the cytoskeleton. In: Carraway KL, Carraway CAC (eds) Cytoskeleton: signaling and cell regulation: Chapter 11. Oxford University Press, Oxford

    Google Scholar 

  • Gunst SJ, Fredberg JJ (2003) The first three minutes: smooth muscle contraction, cytoskeletal events, and soft glasses. J Appl Physiol 95:413–425

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MA, Spudich JA (2012) The myosin superfamily at a glance. J Cell Sci 125:1627–1632

    Article  Google Scholar 

  • Hill AV (1965) Trails and trials in physiology. E. Arnold, London, pp 14–15

    Google Scholar 

  • Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285:C1082–C1090

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    CAS  PubMed  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog, and crayfish. J Muscle Res Cell Motil 1:279–303

    Article  CAS  PubMed  Google Scholar 

  • Kollmannsberger P, Fabry B (2007) High-force magnetic tweezers with force feedback for biological applications. Rev Sci Instrum 78:114301

    Article  PubMed  Google Scholar 

  • Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97

    Article  CAS  Google Scholar 

  • Lange J, Auernheimer V, Strissel PL, Goldmann WH (2013) Influence of focal adhesion kinase on the mechanical behavior of cell populations. Biochem Biophys Res Commun 436:246–251

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Wang Z, Wu MF, Gunst SJ (1998) Relationship between paxillin and myosin phosphorylation during muscarinic stimulation of smooth muscle. Am J Physiol 274:C741–C747

    CAS  PubMed  Google Scholar 

  • Merkel R (2001) Force spectroscopy on single passive biomolecules and single biomolecular bonds. Phys Rep 346:343–385

    Article  CAS  Google Scholar 

  • Metzner C, Raupach C, Paranhos Zitterbart D, Fabry B (2007) Simple model of cytoskeletal fluctuations. Phys Rev E 76:021925

    Article  CAS  Google Scholar 

  • Metzner C, Raupach C, Mierke CT, Fabry B (2010) Fluctuations of cytoskeleton-bound microbeads – the effect of bead-receptor binding dynamics. J Phys Condens Matter 22:194105

    Article  CAS  PubMed  Google Scholar 

  • Mierke CT, Kollmannsberger P, Paranhos-Zitterbart D, Smith J, Fabry B, Goldmann WH (2008) Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 94:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B (2010) Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 285:13121–13130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möhl C, Kirchgessner N, Schäfer C, Küpper K, Born S, Diez G, Goldmann WH, Merkel R, Hoffmann B (2009) Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation. Cell Motil Cytoskeleton 66:350–364

    Article  PubMed  Google Scholar 

  • Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257–259

    Article  CAS  PubMed  Google Scholar 

  • Müller O, Gaub HE, Sackmann E (1991) Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime: measurements by an oscillating disk rheometer. Macromolecules 24:3111–3120

    Article  Google Scholar 

  • Puig-de-Morales M, Millet E, Fabry B, Navajas D, Wang N, Butler JP, Fredberg JJ (2004) Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am J Physiol Cell Physiol 287:C643–C654

    Article  CAS  PubMed  Google Scholar 

  • Ra HJ, Picart C, Feng H, Sweeney HL, Discher DE (1999) Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion. J Cell Sci 112:1425–1436

    CAS  PubMed  Google Scholar 

  • Raupach C, Zitterbart DP, Mierke CT, Metzner C, Müller FA, Fabry B (2007) Stress fluctuations and motion of cytoskeletal-bound markers. Phys Rev E Stat Nonlinear Soft Matter Phys 76:011918

    Article  Google Scholar 

  • Smith LA, Aranda-Espinoza H, Haun JB, Dembo M, Hammer DA (2007) Neutrophil traction stresses are concentrated in the uropod during migration. Biophys J 92:L58–L60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen J, Wang N (2002) Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624

    Article  CAS  PubMed  Google Scholar 

  • Stamenovic D, Suki B, Fabry B, Wang N, Fredberg JJ (2004) Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J Appl Physiol 96:1600–1605

    Article  PubMed  Google Scholar 

  • Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110:2109–2116

    CAS  PubMed  Google Scholar 

  • Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616

    Article  CAS  PubMed  Google Scholar 

  • Zahalak GI, McConnaughey WB, Elson EL (1990) Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J Biomech Eng 112:283–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ben Fabry for helpful discussions and Dr. Vicky Jackiw for proofreading the manuscript. This work was supported in part by grants from Deutscher Akademischer Austauschdienst (DAAD) and Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Goldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bonakdar, N., Schilling, A., Gerum, R., Alonso, J.L., Goldmann, W.H. (2016). Innovations in Measuring Cellular Mechanics. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics