Skip to main content
Log in

Chloride movement across the basolateral membrane of proximal tubule cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrophysiologic and tracer experiments have shown that Cl entersNecturus proximal tubule cells from the tubule lumen by a process coupled to the flow of Na+, and that Cl entry is electrically silent. The mechanism of Cl exit from the cell across the basolateral membrane has not been directly studied. To evaluate the importance of the movement of Cl ions across the basolateral membrane, the relative conductance of Cl to K+ was determined by a new method. Single-barrel ion-selective microelectrodes were used to measure intracellular Cl and K+ as a function of basolateral membrane PD as it varied normally from tubule to tubule. Basolateral membrane Cl conductance was about 10% of K+ conductance by this method. A second approach was to voltage clamp the basolateral PD to 20 mV above and below the spontaneous PD, while sensing intracellular Cl activity with the second barrel of a double-barrel microelectrode. An axial wire electrode in the tubule lumen was used to pass current across the tubular wall and thereby vary the basolateral membrane PD. Cell Cl activity was virtually unaffected by the PD changes. We conclude that Cl leavesNecturus proximal tubule cells by a neutral mechanism, possibly coupled to the efflux of Na+ or K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos, T. 1973. Biionic potentials in the proximal tubule ofNecturus kidney.J. Physiol. (London) 233(2):375

    Google Scholar 

  • Anagnostopoulos, T., Planelles, G. 1979. Organic anion permeation at the proximal tubule ofNecturus.Pfluegers Arch. 381:231

    Article  Google Scholar 

  • Anagnostopoulos, T., Velu, E. 1974. Electrical resistance of cell membranes inNecturus kidney.Pfluegers Arch. 346:327

    Article  Google Scholar 

  • Boulpaep, E.L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport und Funktion Intracellulärer Electrolyte. F. Krück, editor, pp. 98–107. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Boulpaep, E.L. 1976a. Electrical phenomena in the nephron.Kidney Int. 9:88

    PubMed  Google Scholar 

  • Boulpaep, E.L. 1976b. Recent advances in electrophysiology of the nephron.Annu. Rev. Physiol. 38:20

    Article  Google Scholar 

  • Giebisch, G. 1961. Measurements of electrical potential differences on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659

    PubMed  Google Scholar 

  • Khuri, R.N., Agulian, S., Bogharian, K., Aklanjian, D. 1975. Electrochemical potentials of chloride in proximal renal tubule ofNecturus maculosus.Comp. Biochem. Physiol. 50A:695

    Article  Google Scholar 

  • Khuri, R.N., Hajjar, J.J., Agulian, S., Bogharian, K., Kalloghlian, A., Bizri, H. 1972. Intracellular potassium in cells of the proximal tubule ofNecturus maculosis.Pfluegers Arch. 338:73

    Article  Google Scholar 

  • Kimura, G., Spring, K.R. 1978. Transcellular and paracellular trace chloride fluxes inNecturus proximal tubule.Am. J. Physiol. 235(6):F617 orAm. J. Physiol.: Renal Fluid Electrolyte Physiol.4(6):F617

    PubMed  Google Scholar 

  • Kimura, G., Spring, K.R. 1979. Luminal Na+ entry intoNecturus proximal tubule cells.Am. J. Physiol. 236(3):F295 orAm. J. Physiol: Renal Fluid Electrolyte Physiol.5(3):F295

    PubMed  Google Scholar 

  • Kimura, G., Spring, K.R. 1980. Ionic conductance of the cell membranes and shunts ofNecturus proximal tubule.Curr. Topics Membr. Transp. 13:265

    Google Scholar 

  • Ogden, T.E., Citron, M.C., Pierantoni, R. 1978. The jetstream microbeveller: An inexpensive way to bevel ultrafine glass micropipettes.Science. 201:469

    PubMed  Google Scholar 

  • Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239

    Article  Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gall-bladder epithelium.J. Membrane Biol. 49:345

    Article  Google Scholar 

  • Spring, K.R., Giebisch, G. 1977. Tracer Na fluxes inNecturus proximal tubule.Am. J. Physiol. 232:F461 orAm. J. Physiol.: Renal Fluid.Electrolyte Physiol. 1:F461

    PubMed  Google Scholar 

  • Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233

    Article  Google Scholar 

  • Spring, K.R., Paganelli, C.V. 1972. Sodium flux inNecturus proximal tubule under voltage clamp.J. Gen. Physiol. 60:181

    Google Scholar 

  • Whittembury, G., Diezi, F., Diezi, J., Spring, K., Giebisch, G. 1975. Some aspects of proximal tubular sodium chloride reabsorption inNecturus kidney.Kidney Int. 7:293

    PubMed  Google Scholar 

  • Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1966. Electrophysiological studies on single nephrons.Proc. Int. Congr. Nephrol. (3rd, Washington, D.C.)1:35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shindo, T., Spring, K.R. Chloride movement across the basolateral membrane of proximal tubule cells. J. Membrain Biol. 58, 35–42 (1981). https://doi.org/10.1007/BF01871032

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871032

Keywords

Navigation