Skip to main content

Recording Ion Channels in Isolated, Split-Opened Tubules

  • Protocol
  • First Online:
Ion Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 998))

Abstract

Ion channels play key roles in physiology. They function as protein transducers able to transform stimuli and chemical gradients into electrical signals. They also are critical for cell signaling and play a particularly important role in epithelial transport acting as gateways for the movement of electrolytes across epithelial cell membranes. Experimental limitations, though, have hampered the recording of ion channel activity in many types of tissue. This has slowed progress in understanding the cellular and physiological function of these channels with most function inferred from in vitro systems and cell culture models. In many cases, such inferences have clouded rather than clarified the picture. Here, we describe a contemporary method for isolating and patch-clamping renal tubules for ex vivo analysis of ion channel function in native tissue. Focus is placed on quantifying the activity of the epithelial Na+ channel (ENaC) in the aldosterone-­sensitive distal nephron (ASDN). This isolated, split-open tubule preparation enables recording of renal ion channels in the close-to-native environment under the control of native cell signaling pathways and receptors. When combined with complementary measurements of organ and system function, and contemporary molecular genetics and pharmacology used to manipulate function and regulation, patch-clamping renal channels in the isolated, split-open tubule enables understanding to emerge about the physiological function of these key proteins from the molecule to the whole animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  PubMed  CAS  Google Scholar 

  2. Bonny O, Hummler E (2000) Dysfunction of epithelial sodium transport: from human to mouse. Kidney Int 57:1313–1318

    Article  PubMed  CAS  Google Scholar 

  3. Hummler E, Horisberger JD (1999) Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am J Physiol 276:G567–G571

    PubMed  CAS  Google Scholar 

  4. Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897

    Article  PubMed  CAS  Google Scholar 

  5. Schild L (1996) The ENaC channel as the primary determinant of two human diseases: Liddle syndrome and pseudohypoaldosteronism. Nephrologie 17:395–400

    PubMed  CAS  Google Scholar 

  6. Schild L (2004) The epithelial sodium channel: from molecule to disease. Rev Physiol Biochem Pharmacol 151:93–107

    Article  PubMed  CAS  Google Scholar 

  7. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    Article  PubMed  CAS  Google Scholar 

  8. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978

    Article  PubMed  CAS  Google Scholar 

  9. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ (1997) Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet 6:1943–1949

    Article  PubMed  CAS  Google Scholar 

  10. Berjukow S, Doring F, Froschmayr M, Grabner M, Glossmann H, Hering S (1996) Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br J Pharmacol 118:748–754

    Article  PubMed  CAS  Google Scholar 

  11. Gamper N, Stockand JD, Shapiro MS (2005) The use of Chinese hamster ovary (CHO) cells in the study of ion channels. J Pharmacol Toxicol Methods 51:177–185

    Article  PubMed  CAS  Google Scholar 

  12. Robbins J, Trouslard J, Marsh SJ, Brown DA (1992) Kinetic and pharmacological properties of the M-current in rodent neuroblastoma  ×  glioma hybrid cells. J Physiol 451:159–185

    PubMed  CAS  Google Scholar 

  13. Staruschenko A, Booth RE, Pochynyuk O, Stockand JD, Tong Q (2006) Functional reconstitution of the human epithelial Na+ channel in a mammalian expression system. Methods Mol Biol 337:3–13

    PubMed  CAS  Google Scholar 

  14. Bugaj V, Mironova E, Kohan DE, Stockand JD (2012) Collecting duct-specific endothelin B receptor knockout increases ENaC activity. Am J Physiol Cell Physiol 302:C188–C194

    Article  PubMed  CAS  Google Scholar 

  15. Mironova E, Peti-Peterdi J, Bugaj V, Stockand JD (2011) Diminished paracrine regulation of the epithelial Na+ channel by purinergic signaling in mice lacking connexin 30. J Biol Chem 286:1054–1060

    Article  PubMed  CAS  Google Scholar 

  16. Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD (2008) Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283:36599–36607

    Article  PubMed  CAS  Google Scholar 

  17. Roos KP, Strait KA, Raphael KL, Blount MA, Kohan DE (2012) Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice. Am J Physiol Renal Physiol 302:F78–F84

    Article  PubMed  CAS  Google Scholar 

  18. Rubera I, Hummler E, Beermann F (2009) Transgenic mice and their impact on kidney research. Pflugers Arch 458:211–222

    Article  PubMed  CAS  Google Scholar 

  19. Bailey MA, Giebisch G, Abbiati T, Aronson PS, Gawenis LR, Shull GE, Wang T (2004) NHE2-mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice. J Physiol 561:765–775

    Article  PubMed  CAS  Google Scholar 

  20. Huang DY, Osswald H, Vallon V (2000) Sodium reabsorption in thick ascending limb of Henle’s loop: effect of potassium channel blockade in vivo. Br J Pharmacol 130:1255–1262

    Article  PubMed  CAS  Google Scholar 

  21. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302:R75–R83

    Article  PubMed  CAS  Google Scholar 

  22. Vallon V (2009) Micropuncturing the nephron. Pflugers Arch 458:189–201

    Article  PubMed  CAS  Google Scholar 

  23. Wang T, Hropot M, Aronson PS, Giebisch G (2001) Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol Renal Physiol 281:F1117–F1122

    PubMed  CAS  Google Scholar 

  24. Kirchner KA (1990) Greater loop chloride uptake contributes to blunted pressure natriuresis in Dahl salt sensitive rats. J Am Soc Nephrol 1:180–186

    PubMed  CAS  Google Scholar 

  25. Roman RJ, Kaldunski ML (1991) Enhanced chloride reabsorption in the loop of Henle in Dahl salt-sensitive rats. Hypertension 17:1018–1024

    Article  PubMed  CAS  Google Scholar 

  26. Wagner CA, Lukewille U, Valles P, Breton S, Brown D, Giebisch GH, Geibel JP (2003) A rapid enzymatic method for the isolation of defined kidney tubule fragments from mouse. Pflugers Arch 446:623–632

    Article  PubMed  CAS  Google Scholar 

  27. Schafer JA, Watkins ML, Li L, Herter P, Haxelmans S, Schlatter E (1997) A simplified method for isolation of large numbers of defined nephron segments. Am J Physiol Renal Physiol 273:F650–F657

    CAS  Google Scholar 

  28. Pavlov TS, Chahdi A, Ilatovskaya DV, Levchenko V, Vandewalle A, Pochynyuk O, Sorokin A, Staruschenko A (2010) Endothelin-1 inhibits the epithelial Na+ channel through βPix/14-3-3/Nedd4-2. J Am Soc Nephrol 21:833–843

    Article  PubMed  CAS  Google Scholar 

  29. Pavlov TS, Ilatovskaya DV, Levchenko V, Mattson DL, Roman RJ, Staruschenko A (2011) Effects of cytochrome P450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 301:F672–F681

    Article  PubMed  CAS  Google Scholar 

  30. Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD (2007) Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J Gen Physiol 130:399–413

    Article  PubMed  CAS  Google Scholar 

  31. Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD (2008) Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 294:F38–F46

    Article  PubMed  CAS  Google Scholar 

  32. Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD (2007) Acute regulation of the epithelial Na  +  channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18:1652–1661

    Article  PubMed  CAS  Google Scholar 

  33. Yu L, Helms MN, Yue Q, Eaton DC (2008) Single-channel analysis of functional epithelial sodium channel (ENaC) stability at the apical membrane of A6 distal kidney cells. Am J Physiol Renal Physiol 295:F1519–F1527

    Article  PubMed  CAS  Google Scholar 

  34. Sakmann, B. and Neher, E. (1995) ­Single-channel recording. Springer Second Ed, 1–722.

    Google Scholar 

  35. Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD (2008) Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am J Physiol Renal Physiol 295:F1063–F1070

    Article  PubMed  CAS  Google Scholar 

  36. Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A (2011) Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 57:996–1002

    Article  PubMed  CAS  Google Scholar 

  37. Sun P, Lin DH, Yue P, Jiang H, Gotlinger KH, Schwartzman ML, Falck JR, Goli M, Wang WH (2010) High potassium intake enhances the inhibitory effect of 11,12-EET on ENaC. J Am Soc Nephrol 21:1667–1677

    Article  PubMed  CAS  Google Scholar 

  38. Palmer LG, Frindt G (1986) Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci USA 83:2767–2770

    Article  PubMed  CAS  Google Scholar 

  39. Bugaj V, Pochynyuk O, Stockand JD (2009) Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol 297:F1411–F1418

    Article  PubMed  CAS  Google Scholar 

  40. Chen L, Williams SK, Schafer JA (1990) Differences in synergistic actions of vasopressin and deoxycorticosterone in rat and rabbit CCD. Am J Physiol Renal Physiol 259:F147–F156

    CAS  Google Scholar 

  41. Frindt G, Burg MB (1972) Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int 1:224–231

    Article  PubMed  CAS  Google Scholar 

  42. Frindt G, Palmer LG (1996) Regulation of Na channels in the rat cortical collecting tubule: effects of cAMP and methyl donors. Am J Physiol Renal Physiol 271:F1086–F1092

    CAS  Google Scholar 

  43. Hawk CT, Li L, Schafer JA (1996) AVP and aldosterone at physiological concentrations have synergistic effects on Na  +  transport in rat CCD. Kidney Int 57:S35–S41

    CAS  Google Scholar 

  44. Helman SI, Grantham JJ, Burg MB (1971) Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol 220:1825–1832

    PubMed  CAS  Google Scholar 

  45. Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, Insel PA, Stockand JD, Vallon V (2010) Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J 24:2056–2065

    Article  PubMed  CAS  Google Scholar 

  46. Stockand JD, Mironova E, Bugaj V, Rieg T, Insel PA, Vallon V, Peti-Peterdi J, Pochynyuk O (2010) Purinergic inhibition of ENaC produces aldosterone escape. J Am Soc Nephrol 21:1903–1911

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research from the author’s laboratories is supported by the NIH grants R01 DK59594, R01 DK087460, R01 DK070571 (to J.D.S.), and R01HL108880 (to A.S.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mironova, E., Bugay, V., Pochynyuk, O., Staruschenko, A., Stockand, J.D. (2013). Recording Ion Channels in Isolated, Split-Opened Tubules. In: Gamper, N. (eds) Ion Channels. Methods in Molecular Biology, vol 998. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-351-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-351-0_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-350-3

  • Online ISBN: 978-1-62703-351-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics