Skip to main content
Log in

Voltage and Ca2+-Activated K+ channel in cultured epithelial cells (MDCK)

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Patch-clamp techniques were used to study a K channel in the cell membrane of MDCK cells. This cell line derives from the kidney of a normal dog, presumably from the distal nephron, a region involved in potassium secretion. The cells were cultured in confluent monolayers and approached from the apical side. The K channel we describe is Ca2+ and voltage activated, has a conductance of 221±7 pS, and can be inhibited by 10mm tetraethylammonium and by 1mm quinidine, but not by 4-aminopyridine, nor by 1mm Ba2+ added to the outer side. Using the whole-cell configuration, we find that most of the cationic conductance of the membrane is constituted by a K-specific one (maximum K conductance 32.1±3.9 nSvs. a leak conductance of 1.01±0.17 nS). Comparisons of the maximum K conductance with that of a single K channel indicates that an MDCK cell has an average of 145 such channels. The membrane capacity is 24.5±1.4 pF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwater, I., Rosario, L., Rojas, E. 1983. Properties of the Ca-activated K+ channel in pancreatic β-cells.Cell Calcium 4:451–4561

    PubMed  Google Scholar 

  • Barker, G., Simmons, N.L. 1981. Identification of two strains of cultured canine renal epithelial cells (MDCK cells) which display entirely different physiological properties.Q. J. Exp. Physiol. 66:61–72

    PubMed  Google Scholar 

  • Brown, C.D.A., Simmons, N.L. 1982. K+ transport in ‘tight’ epithelial monolayers of MDCK cells. Evidence for a calcium-activated K+ channel.Biochim. Biophys. Acta 690:95–105

    PubMed  Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Fernandez-Castelo, S., Meza, I. 1981. Fluxes, junctions and blister in cultured monolayers of epithelioid cells (MDCK).Ann N. Y. Acad. Sci. 372:422–441

    PubMed  Google Scholar 

  • Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978. Polarized monolayer formed by epithelial cells on a permeable and translucent support.J. Cell. Biol. 77:853–880

    PubMed  Google Scholar 

  • Cereijido, M., Robbins, E. S., Sabatini, D.D., Stefani, E. 1984. Cell-to-cell communication in monolayers of epithelioid cell (MDCK) as a function of the age of the monolayers.J. Membrane Biol. 81:41–48

    Google Scholar 

  • Fenwick, E.M., Marty, A., Neher, E. 1982. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine.J. Physiol. (London) 331:577–598

    Google Scholar 

  • Fernandez-Castelo, S., Bolivar, J.J., Lopez-Vancell, R., Beaty, G., Cereijido, M.. 1985. Ion transport in MDCK cells.In: Tissue Culture of Epithelial Cells. M. Taub, editor. pp. 37–50. Plenum, London

    Google Scholar 

  • Findlay, I. 1984. A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland.J. Physiol. (London) 350:179–195

    Google Scholar 

  • Garcia-Perez, A., Smith, W.L. 1983. Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release.Am. J. Physiol. 244:C211-C220

    PubMed  Google Scholar 

  • Guggino, S.E., Suarez-Isla, B.A., Guggino, W.B., Sacktor, B. 1985. Forskolin and antidiuretic hormones stimulate a Ca2+-activated K+ channel in cultured kidney cells.Am. J. Physiol. 249:F448-F455

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  • Hassid, A. 1983. Modulation of cyclic 3′5′-adenosin monophosphate in cultured renal (MDCK) cells by endogenous protaglandins.J. Cell Physiol. 116:297–302

    PubMed  Google Scholar 

  • Herzlinger, D.A., Easton, T.G., Ojakian, G.K. 1982. The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule.J. Cell. Biol. 93:269–277

    PubMed  Google Scholar 

  • Hunter, M., Lopes, A.G., Boulpaep, E.L., Giebisch, G.H. 1984. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical tubules.Proc. Natl. Acad. Sci. USA 81:4237–4239

    Google Scholar 

  • Koeppen, B.M., Beyenbach, K.W., Helman, S.I. 1984. Single-channel currents in renal tubules.Am. J. Physiol. 247:F380-F384

    PubMed  Google Scholar 

  • Kolb, H.A., Brown, C.D.A., Murer, H. 1985. Identification of a voltage-dependent anion channel in the apical membrane of a Cl secretory epithelium (MDCK).Pfluegers Arch. 402:262–265

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Lewis, M.G., Spector, A.A. 1981. Differences in types of protaglandins produced by two MDCK canine kidney cell sublines.Prostaglandins 21:1025–1032

    PubMed  Google Scholar 

  • Madin, S.H., Darby, N.B. 1958. As catalogued in: American type Culture Collection Catalog of Strains.2:574–576

    Google Scholar 

  • Marty, A. 1981. Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes.Nature (London) 291:497–500

    Article  Google Scholar 

  • Maruyama, Y., Gallacher, D.V., Petersen, O.H. 1983. Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands.Nature (London) 302:827–829

    Article  Google Scholar 

  • Meza, I., Sabanero, M., Stefani, E., Cereijido, M. 1982. Occluding junctions in MDCK cells: Modulation of transepithelial permeability by the cytoskeleton.J. Cell Biochem. 18:407–421

    PubMed  Google Scholar 

  • Palmer, L.G. 1986. Patch-clamp technique in renal physiology.Am. J. Physiol. 29:F379-F385

    Google Scholar 

  • Paulmichl, M., Gstraunthaler, G., Lang, F. 1985. Electrical properties of Madin-Darby canine kidney cells. Effects of extracellular potassium and bicarbonate.Pfluegers Arch. 405:102–107

    Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  • Richardson, J.C.W., Scalera, V., Simmons, N.L. 1981. Identification of two strains of MDCK cells whichresemble separate nephron tubule segments.Biochim. Biophys. Acta 673:26–36

    PubMed  Google Scholar 

  • Stefani, E., Cereijido, M. 1983. Electrical properties of cultured epithelioid cells (MDCK).J. Membrane Biol. 73:177–184

    Google Scholar 

  • Valentich, J.D. 1981. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule.Ann. N. Y. Acad. Sci. 372:384–405

    PubMed  Google Scholar 

  • Wong, S., Lecar, H., Adler, M. 1982. Single calcium-dependent potassium channels in clonal anterior pituitary cells.Biophys. J. 39:313–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolívar, J.J., Cereijido, M. Voltage and Ca2+-Activated K+ channel in cultured epithelial cells (MDCK). J. Membrain Biol. 97, 43–51 (1987). https://doi.org/10.1007/BF01869613

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869613

Key Words

Navigation