Skip to main content
Log in

The Contribution of Changes of Intracelluar Potassium Ion Concentration to the Kinetics of Voltage-Dependent Potassium Current

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Voltage-dependent potassium channels (Kv channels) mediate the voltage-dependent potassium ionic current, contribute to the generation of the action potential and to the regulation of neuronal excitability. To date, a large number of studies of these ion channels have been carried out using the patch-clamp method in the whole-cell configuration. It is generally assumed that during the implementation of this method intracellular ion concentrations remain approximately constant due to the relatively rapid exchange of the content between the cytoplasm and the patch pipette. However, this assumption may be incorrect if the flow of ions through the membrane is large. It was demonstrated in this study that the large outward currents of potassium ions can lead to a decrease in their intracellular concentration even during the whole-cell patch-clamp recording. This phenomenon can accelerate the decay of the recorded voltage-dependent potassium currents and may consequently lead to the overestimation of the inactivation rate of voltage-dependent potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gutman G.A., Chandy K.G., Grissmer S., Lazdunski M., McKinnon D., Pardo L.A., Robertson G.A., Rudy B., Sanguinetti M.C., Stühmer W., Wang X. 2005. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508.

    Article  CAS  PubMed  Google Scholar 

  2. Hille B. 2001. Ion channels of excitable membranes. Sunderland, Mass.: Sinauer.

    Google Scholar 

  3. Lai H.C., Jan L.Y. 2006. The distribution and targeting of neuronal voltage-gated ion channels. Nature Rev. Neuroscience. 7, 548–562.

    Article  CAS  Google Scholar 

  4. Manganas L.N., Akhtar S., Antonucci D.E., Campomanes C.R., Dolly J.O., Trimmer J.S. 2001. Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J. Biol. Chem. 276, 49427–49434.

    Article  CAS  PubMed  Google Scholar 

  5. Delisle B.P., Anson B.D., Rajamani S., January C.T. 2004. Biology of cardiac arrhythmias: Ion channel protein trafficking. Circ. Res. 94, 1418–1428.

    Article  CAS  PubMed  Google Scholar 

  6. Yellen G. 2002. The voltage-gated potassium channels and their relatives. Nature. 419, 35–42.

    Article  CAS  PubMed  Google Scholar 

  7. Camerino D.C., Tricarico D., Desaphy J.-F. 2007. Ion channel pharmacology. Neurotherapeutics. J. Amer. Soc. Experim. NeuroTherap. 4, 184–198.

    Article  CAS  Google Scholar 

  8. Zhou B.Y., Ma W., Huang X.Y. 1998. Specific antibodies to the external vestibule of voltage-gated potassium channels block current. J. Gen. Physiol. 111, 555–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu S.P., Kerchner G.A. 1998. Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J. Neurosci. Res. 52, 612–617.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson S.M., Pappone P.A. 1999. P2 receptor modulation of voltage-gated potassium currents in Brown adipocytes. J. Gen. Physiol. 113, 125–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu C., Lu Y., Tang G., Wang R. 1999. Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. Amer. J. Physiol. Gastrointest. Liver Physiol. 277, G1055–G1063.

    Article  CAS  Google Scholar 

  12. Bekkers J.M. 2000. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 525, 611–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Misonou H., Thompson S.M., Cai X. 2008. Dynamic regulation of the Kv2.1 Voltage-gated potassium channel during brain ischemia through neuroglial interaction. J. Neurosci. 28, 8529–8538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding S., Zhou F.-M. 2011. Profiling voltage-gated potassium channel mRNA expression in nigral neurons using single-cell RT-PCR techniques. J. Visualized Experim. 55, 2–5.

    Google Scholar 

  15. Wu B.-M., Wang X.-H., Zhao B., Bian E.-B., Yan H., Cheng H., Lv X.-W., Xiong Z.-G., Li J. 2013. Electrophysiology properties of voltage-gated potassium channels in rat peritoneal macrophages. Int. J. Clin. Experim. Medicine. 6, 166–173.

    Google Scholar 

  16. Pusch M., Neher E. 1988. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Archiv. Europ. J. Physiol. 411. 204–211.

    Article  CAS  Google Scholar 

  17. Oliva C., Cohen I.S., Mathias R.T. 1988. Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys. J. 54, 791–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mathias R.T., Cohen I.S., Oliva C. 1990. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophys. J. 58, 759–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foll F. Le, Soriani O., Vaudry H., Cazin L. 2000. Contribution of changes in the chloride driving force to the fading of I(GABA) in frog melanotrophs. Amer. J. Physiol. Endocrin. Metabolism. 278, E430–E443.

    Article  Google Scholar 

  20. Karlsson U., Druzin M., Johansson S. 2011. Cl concentration changes and desensitization of GABA(A) and glycine receptors. J. Gen. Physiol. 138, 609–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yelhekar T.D., Druzin M., Karlsson U., Blomqvist E., Johansson S. 2016. How to properly measure a current–voltage relation?—Interpolation vs. ramp methods applied to studies of GABAA receptors. Front. Cell. Neurosci. 10, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cahalan M.D., Chandy K.G., DeCoursey T.E., Gupta S. 1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358, 197–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maruyama Y. 1987. A patch-clamp study of mammalian platelets and their voltage-gated potassium current. J. Physiol. 391, 467–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deutsch C., Lee S.C. 1989. Modulation of K+ currents in human lymphocytes by pH. J. Physiol. 413, 399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choquet D., Korn H. 1992. Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes. J. Gen. Physiol. 99, 217–240.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron M.A., Abed A. Al, Buskila Y., Dokos S., Lovell N.H., Morley J.W. 2017. Differential effect of brief electrical stimulation on voltage-gated potassium channels. J. Neurophysiol. 117, 2014–2024.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neher E. 1992. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131.

    Article  CAS  PubMed  Google Scholar 

  28. Bertollini L., Biella G., Wanke E., Avanzini G., de Curtis M. 1994.Fluoride reversibly blocks HVA calcium current in mammalian thalamic neurones. Neuroreport. 5, 553–556.

    Article  CAS  PubMed  Google Scholar 

  29. Kay A.R., Miles R., Wong R.K. 1986. Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J. Neurosci. 6, 2915–2920.

    Article  CAS  PubMed  Google Scholar 

  30. Kostyuk P.G., Krishtal O.A., Shakhovalov Y.A. 1977. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J. Physiol. (Lond.). 270, 545–568.

    Article  CAS  Google Scholar 

  31. Kang J., Huguenard J.R., Prince D.A. 2000. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J. Neurophysiol. 83, 70–80.

    Article  CAS  PubMed  Google Scholar 

  32. Goldman D.E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hodgkin A.L., Katz B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alberts B. 2008. Molecular biology of the cell. 5th ed. New York: Garland Science.

    Google Scholar 

  35. Clay J.R. 2009. Determining k channel activation curves from K channel currents often requires the Goldman–Hodgkin–Katz equation. Front. Cell. Neurosci. 3, 20.

    PubMed  PubMed Central  Google Scholar 

  36. Clay J.R. 1991. A paradox concerning ion permeation of the delayed rectifier potassium ion channel in squid giant axons. J. Physiol. (Lond.). 444, 499–511.

    Article  CAS  Google Scholar 

  37. Bormann J., Hamill O.P., Sakmann B. 1987. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frankenhaeuser B. 1962. Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. 160, 40–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Binstock L., Goldman L. 1971. Rectification in instantaneous potassium current-voltage relations in Myxicola giant axons. J. Physiol. (Lond.). 217, 517–531.

    Article  CAS  Google Scholar 

  40. Siegelbaum S.A., Camardo J.S., Kandel E.R. 1982. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature. 299, 413–417.

    Article  CAS  PubMed  Google Scholar 

  41. Taglialatela M., Stefani E. 1993. Gating currents of the cloned delayed-rectifier K+ channel DRK1. Proc. Natl. Acad. Sci. USA. 90, 4758–4762.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the state assignment of the Ministry of Education and Science of Russia (project “Neurophysiological mechanisms of regulation of functions and their evolution”, theme no. AAAA A18-118012290372-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Semenov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All experimental procedures followed the guidelines of the European Community Council Directive 86/609/EEC and were approved by the Animal Care and Use Committee of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A., Amakhin, D.V. & Veselkin, N.P. The Contribution of Changes of Intracelluar Potassium Ion Concentration to the Kinetics of Voltage-Dependent Potassium Current. Biochem. Moscow Suppl. Ser. A 13, 233–242 (2019). https://doi.org/10.1134/S1990747819030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819030061

Keywords:

Navigation