Skip to main content
Log in

A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Consider the solution of one-dimensional linear initial-boundary value problems by a finite element method of lines using a piecewiseP th-degree polynomial basis. A posteriori estimates of the discretization error are obtained as the solutions of either local parabolic or local elliptic finite element problems using piecewise polynomial corrections of degreep+1 that vanish at element ends. Error estimates computed in this manner are shown to converge in energy under mesh refinement to the exact finite element discretization error. Computational results indicate that the error estimates are robust over a wide range of mesh spacings and polynomial degrees and are, furthermore, applicable in situations that are not supported by the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abromowitz, M., Stegun, I.A. (1965.): Handbook of mathematical functions. Dover, New York

    Google Scholar 

  2. Adjerid, S., Flaherty, J.E. (1986): A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal.23, 778–796

    Google Scholar 

  3. Adjerid, S., Flaherty, J.E. (1986): A moving-mesh finite element method with local refinement for parabolic partial differential equations. Comput. Methods Appl. Mech. Eng.55, 3–26

    Google Scholar 

  4. Adjerid, S., Flaherty, J.E. (1988): A local refinement finite element method for two-dimensional parabolic systems. SIAM J. Sci. Stat. Comput.9, 792–810

    Google Scholar 

  5. Adjerid, S., Flaherty, J.E. (1988): Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems. Numer. Math.53, 183–198

    Google Scholar 

  6. Adjerid, S., Flaherty, J.E. (1992): A posteriori error estimation for two-dimensional parabolic partial differential equations. (in preparation)

  7. Adjerid, S., Flaherty, J.E., Moore, P.K., Wang, Y.J. (1991): High-order adaptive methods for parabolic systems. Tech. Rep. 91–25, Department Computer Science. Rensselaer Polytechnic Institute, Troy (Also, Physica D (1992) to appear)

    Google Scholar 

  8. Babuska, I. (1989): Personal communication

  9. Babuska, I., Dorr, M.R. (1981): Error estimates for the combined h and p versions of the finite element method. Numer. Math.37, 257–277

    Google Scholar 

  10. Babuska, I., Rheinboldt, W. (1978): Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15, 736–754

    Google Scholar 

  11. Babuska, I., Yu, D. (1987): Asymptotically exact a-posteriori error estimator for biquadratic elements. Finite Elem. Anal. Des.3, 341–354

    Google Scholar 

  12. Bank, R.E., Weiser, A. (1985): Some a posteriori error estimators for elliptic partial differential equations. Math. Comput.44, 283–302

    Google Scholar 

  13. Berzins, M. (1988): Global error estimation in the method of lines for parabolic equations. SIAM J. Sci. Stat. Comput.9, 687–703

    Google Scholar 

  14. Bieterman, M., Babuska, I. (1982): The finite element method for parabolic equations. I. a posteriori error estimation. Numer. Math.40, 339–371

    Google Scholar 

  15. Bieterman, M., Babuska, I. (1982): The finite element method for parabolic equations. II. a posteriori error estimation and adaptive approach. Numer. Math.40, 373–406

    Google Scholar 

  16. Coyle, J.M., Flaherty, J.E., Ludwig, R. (1986): On the stability of mesh equidistribution schemes for time-dependent partial differential equations. J. Comput. Phys.62, 26–39

    Google Scholar 

  17. Devloo, J., Oden, J.T., Pattani, P. (1988): An h-p adaptive, finite element method for the numerical simulation of compressible flow. Comput. Methods Appl. Mech. Eng.70, 203–235

    Google Scholar 

  18. Lawson, J., Berzins, M., Dew, P.M. (1991): Balancing space and time errors in the method of lines. SIAM. J. Sci. Stat. Comput.12, 573–594

    Google Scholar 

  19. Oden, J.T., Carey, G.F. (1983): Finite elements: mathematical aspects. Vol. IV, Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Petzold, L.R. (1982): A description of DASSL: a differential/algebraic system solver, Rep. Sand. 82-8637. Sandia National Laboratory Livermore

  21. Thomée, V. (1980): Negative norm estimates and superconvergence in Galerkin Methods for Parabolic Problems. Math. Comp.34, 93–113

    Google Scholar 

  22. Wait, R., Mitchell, A.R. (1985): Finite element analysis and applications. Wiley, Chichester

    Google Scholar 

  23. Szabo, B., Babuska, I. (1991): Finite element analysis. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR 90-0194; by the U.S. Army Research Office under Contract Number DAAL03-91-G-0215; and by the National Science Foundation under Institutional Infrastructure Grant Number CDA-8805910

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adjerid, S., Flaherty, J.E. & Wang, Y.J. A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65, 1–21 (1993). https://doi.org/10.1007/BF01385737

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385737

Mathematicals Subject Classification (1991)

Navigation