Skip to main content
Log in

Constructing Nitsche’s Method for Variational Problems

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Nitsche’s method is a well-established approach for weak enforcement of boundary conditions for partial differential equations (PDEs). It has many desirable properties, including the preservation of variational consistency and the fact that it yields symmetric, positive-definite discrete linear systems that are not overly ill-conditioned. In recent years, the method has gained in popularity in a number of areas, including isogeometric analysis, immersed methods, and contact mechanics. However, arriving at a formulation based on Nitsche’s method can be a mathematically arduous process, especially for high-order PDEs. Fortunately, the derivation is conceptually straightforward in the context of variational problems. The goal of this paper is to elucidate the process through a sequence of didactic examples. First, we show the derivation of Nitsche’s method for Poisson’s equation to gain an intuition for the various steps. Next, we present the abstract framework and then revisit the derivation for Poisson’s equation to use the framework and add mathematical rigor. In the process, we extend our derivation to cover the vector-valued setting. Armed with a basic recipe, we then show how to handle a higher-order problem by considering the vector-valued biharmonic equation and the linearized Kirchhoff–Love plate. In the end, the hope is that the reader will be able to apply Nitsche’s method to any problem that arises from variational principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Illinois

    Google Scholar 

  2. Lew AJ, Buscaglia GC (2008) A discontinuous-Galerkin-based immersed boundary method. Int J Numer Meth Eng 76(4):427–454. https://doi.org/10.1002/nme.2312

    Article  MathSciNet  Google Scholar 

  3. Belgacem FB (1999) The mortar finite element method with Lagrange multipliers. Numer Math 84(2):173–197. https://doi.org/10.1007/s002110050468

    Article  MathSciNet  Google Scholar 

  4. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012. https://doi.org/10.1137/S0036142999350929

    Article  MathSciNet  Google Scholar 

  5. Farhat C, Lesoinne M, LeTallec P et al (2001) FETI-DP: a dual-primal unified FETI method—Part I: a faster alternative to the two-level FETI method. Int J Numer Meth Eng 50(7):1523–1544. https://doi.org/10.1002/nme.76

    Article  Google Scholar 

  6. Farhat C, Roux F (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32(6):1205–1227. https://doi.org/10.1002/nme.1620320604

    Article  MathSciNet  Google Scholar 

  7. Brezzi F, Fortin M (2012) Mixed and hybrid finite element methods, vol 15. Springer, Berlin. https://doi.org/10.1007/978-1-4612-3172-1

  8. Babuška I (1973) The finite element method with penalty. Math Comput 27(122):221–228. https://doi.org/10.1090/S0025-5718-1973-0351118-5

    Article  MathSciNet  Google Scholar 

  9. Kamensky D, Hsu MC, Yu Y et al (2017) Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. Comput Methods Appl Mech Eng 314:408–472. https://doi.org/10.1016/j.cma.2016.07.028

    Article  MathSciNet  Google Scholar 

  10. Evans JA, Hughes TJR (2013) Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numer Math 123(2):259–290. https://doi.org/10.1007/s00211-012-0484-6

    Article  MathSciNet  Google Scholar 

  11. Warburton T, Hesthaven JS (2003) On the constants in hp-finite element trace inverse inequalities. Comput Methods Appl Mech Eng 192(25):2765–2773. https://doi.org/10.1016/S0045-7825(03)00294-9

    Article  MathSciNet  Google Scholar 

  12. Nitsche JA (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Semin Univ Hambg 36(1):9–15. https://doi.org/10.1007/BF02995904

    Article  Google Scholar 

  13. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54. https://doi.org/10.1016/j.cma.2012.03.008

    Article  MathSciNet  Google Scholar 

  14. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552. https://doi.org/10.1016/S0045-7825(02)00524-8

    Article  MathSciNet  Google Scholar 

  15. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12):1257–1275. https://doi.org/10.1016/j.cma.2003.12.019

  16. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053. https://doi.org/10.1016/j.cma.2014.10.040

    Article  MathSciNet  Google Scholar 

  17. Ruess M, Schillinger D, Bazilevs Y et al (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846. https://doi.org/10.1002/nme.4522

    Article  MathSciNet  Google Scholar 

  18. Schillinger D, Dedè L, Scott MA et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249:116–150. https://doi.org/10.1016/j.cma.2012.03.017

    Article  MathSciNet  Google Scholar 

  19. Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Meth Eng 83(7):877–898. https://doi.org/10.1002/nme.2863

    Article  MathSciNet  Google Scholar 

  20. Apostolatos A, Schmidt R, Wüchner R et al (2014) A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int J Numer Meth Eng 97(7):473–504. https://doi.org/10.1002/nme.4568

    Article  MathSciNet  Google Scholar 

  21. Nguyen VP, Kerfriden P, Brino M et al (2014) Nitsche’s method for two and three dimensional NURBS patch coupling. Comput Mech 53(6):1163–1182. https://doi.org/10.1007/s00466-013-0955-3

    Article  MathSciNet  Google Scholar 

  22. Ruess M, Schillinger D, Özcan AI et al (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71. https://doi.org/10.1016/j.cma.2013.10.009

    Article  MathSciNet  Google Scholar 

  23. Kamensky D, Evans J, Hsu MC et al (2017) Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling. Comput Math Appl 74(9):2068–2088. https://doi.org/10.1016/j.camwa.2017.07.006

    Article  MathSciNet  Google Scholar 

  24. Burman E (2010) Ghost penalty. CR Math 348(21–22):1217–1220. https://doi.org/10.1016/j.crma.2010.10.006

    Article  Google Scholar 

  25. Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341. https://doi.org/10.1016/j.apnum.2011.01.008

    Article  MathSciNet  Google Scholar 

  26. Burman E, Claus S, Hansbo P et al (2015) CutFEM: discretizing geometry and partial differential equations. Int J Numer Meth Eng 104(7):472–501. https://doi.org/10.1002/nme.4823

    Article  MathSciNet  Google Scholar 

  27. Elfverson D, Larson MG, Larsson K (2019) A new least squares stabilized Nitsche method for cut isogeometric analysis. Comput Methods Appl Mech Eng 349:1–16. https://doi.org/10.1016/j.cma.2019.02.011

    Article  MathSciNet  Google Scholar 

  28. Larsson K, Kollmannsberger S, Rank E et al (2022) The finite cell method with least squares stabilized Nitsche boundary conditions. Comput Methods Appl Mech Eng 393(114):792. https://doi.org/10.1016/j.cma.2022.114792

    Article  MathSciNet  Google Scholar 

  29. Larsson K, Kollmannsberger S, Rank E et al (2022) The finite cell method with least squares stabilized Nitsche boundary conditions. Comput Methods Appl Mech Eng 393(114):792. https://doi.org/10.1016/j.cma.2022.114792

    Article  MathSciNet  Google Scholar 

  30. Badia S, Neiva E, Verdugo F (2022) Linking ghost penalty and aggregated unfitted methods. Comput Methods Appl Mech Eng 388(114):232. https://doi.org/10.1016/j.cma.2021.114232

    Article  MathSciNet  Google Scholar 

  31. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455. https://doi.org/10.1007/s11831-014-9115-y

    Article  MathSciNet  Google Scholar 

  32. Kiendl J, Bletzinger KU, Linhard J et al (2009) Isogeometric shell analysis with Kirchhoff-love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914. https://doi.org/10.1016/j.cma.2009.08.013

    Article  MathSciNet  Google Scholar 

  33. Benzaken J, Evans JA, McCormick S et al (2021) Nitsche’s method for linear Kirchhoff-Love shells: Formulation, error analysis, and verification. Comput Methods Appl Mech Eng 374(113):544. https://doi.org/10.1016/j.cma.2020.113544

    Article  MathSciNet  Google Scholar 

  34. Bazilevs Y, Hughes TJ (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26. https://doi.org/10.1016/j.compfluid.2005.07.012

    Article  MathSciNet  Google Scholar 

  35. Xu F, Moutsanidis G, Kamensky D et al (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids 158:201–220. https://doi.org/10.1016/j.compfluid.2017.02.006

    Article  MathSciNet  Google Scholar 

  36. Hansbo P, Larson MG (2022) Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems. Int J Numer Methods Eng 123(18):4407–4421. https://doi.org/10.1002/nme.7039

    Article  MathSciNet  Google Scholar 

  37. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41:407–420. https://doi.org/10.1007/s00466-007-0196-4

    Article  Google Scholar 

  38. Chouly F, Hild P (2013) A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J Numer Anal 51(2):1295–1307. https://doi.org/10.1137/12088344X

    Article  MathSciNet  Google Scholar 

  39. Hsu MC, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511. https://doi.org/10.1007/s00466-012-0686-x

    Article  MathSciNet  Google Scholar 

  40. Massing A, Larson M, Logg A et al (2015) A Nitsche-based cut finite element method for a fluid-structure interaction problem. Commun Appl Math Comput Sci 10(2):97–120. https://doi.org/10.2140/camcos.2015.10.97

    Article  MathSciNet  Google Scholar 

  41. Burman E, Fernández MA, Frei S (2020) A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM 54(2):531–564. https://doi.org/10.1051/m2an/2019072

    Article  MathSciNet  Google Scholar 

  42. Bazilevs Y, Michler C, Calo VM et al (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199(13–16):780–790. https://doi.org/10.1016/j.cma.2008.11.020

    Article  MathSciNet  Google Scholar 

  43. Bazilevs Y, Michler C, Calo VM et al (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862. https://doi.org/10.1016/j.cma.2007.06.026

    Article  MathSciNet  Google Scholar 

  44. Rivière B (2008) Discontinuous Galerkin methods for solving elliptic and parabolic equations. SIAM. https://doi.org/10.1137/1.9781611972030

  45. Arnold DN (1982) An Interior Penalty Finite Element Method with Discontinuous Elements. SIAM J Numer Anal 19(4):742–760. https://doi.org/10.1137/0719052

    Article  MathSciNet  Google Scholar 

  46. Schillinger D, Harari I, Hsu MC et al (2016) The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput Methods Appl Mech Eng 309:625–652. https://doi.org/10.1016/j.cma.2016.06.026

    Article  MathSciNet  Google Scholar 

  47. Baumann CE, Oden JT (1999) A discontinuous HP finite element method for convection-diffusion problems. Comput Methods Appl Mech Eng 175(3–4):311–341. https://doi.org/10.1016/S0045-7825(98)00359-4

    Article  MathSciNet  Google Scholar 

  48. Rivière B, Wheeler MF, Girault V (2001) A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J Numer Anal 39(3):902–931. https://doi.org/10.1137/S003614290037174X

  49. Burman E (2012) A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J Numer Anal 50(4):1959–1981. https://doi.org/10.1137/10081784X

    Article  MathSciNet  Google Scholar 

  50. Strang G, Fix GJ (1973) An analysis of the finite element method, vol 212. Prentice-Hall, Englewood Cliffs

  51. Evans LC (1998) Partial differential equations, graduate studies in mathematics, vol 19. AMS, Providence

    Google Scholar 

  52. Juntunen M (2015) On the connection between the stabilized Lagrange multiplier and Nitsche’s methods. Numer Math 131(3):453–471. https://doi.org/10.1007/s00211-015-0701-1

    Article  MathSciNet  Google Scholar 

  53. Ciarlet P (1991) Basic error estimates for elliptic problems. Handb Numer Anal 2:17–351. https://doi.org/10.1016/S1570-8659(05)80039-0

    Article  MathSciNet  Google Scholar 

  54. Grisvard P (2011) Elliptic problems in nonsmooth domains. SIAM. https://doi.org/10.1137/1.9781611972030

  55. Juntunen M, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78(267):1353–1374. https://doi.org/10.1090/S0025-5718-08-02183-2

    Article  MathSciNet  Google Scholar 

  56. Ciarlet PG (2002) The finite element method for elliptic problems. SIAM doi 10(1137/1):9780898719208 https://doi.org/10.1137/1.9780898719208

  57. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148. https://doi.org/10.1016/0377-0427(95)00057-7

  58. Harari I, Hughes TJ (1992) What are C and h?: inequalities for the analysis and design of finite element methods. Comput Methods Appl Mech Eng 97(2):157–192. https://doi.org/10.1016/0045-7825(92)90162-D

    Article  MathSciNet  Google Scholar 

  59. Kirchhoff G (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J für die reine und angewandte Mathematik 40:51–88. http://eudml.org/doc/147439

  60. Lamb H (1889) On the flexure of an elastic plate. Proc Lond Math Soc 1(1):70–91. https://doi.org/10.1112/plms/s1-21.1.70

  61. Harari I, Shavelzon E (2012) Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach. Int J Numer Meth Eng 92(1):99–114. https://doi.org/10.1002/nme.4337

  62. Gustafsson T, Stenberg R, Videman J (2021) Nitsche’s method for Kirchhoff plates. SIAM J Sci Comput 43(3):A1651–A1670. https://doi.org/10.1137/20M1349801

  63. Gander MJ, Kwok F (2012) Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates. SIAM Rev 54(3):573–596. https://doi.org/10.1137/10081931X

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Benzaken.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzaken, J., Evans, J.A. & Tamstorf, R. Constructing Nitsche’s Method for Variational Problems. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-09953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-09953-6

Navigation