Skip to main content
Log in

Formed and preformed metabolite excretion clearances in liver, a metabolite formation organ: Studies on enalapril and enalaprilat in the single-pass and recirculating perfused rat liver

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Single-pass and recirculating rat liver perfusion studies were conducted with [14C]enalapril and [3H] enalaprilat, a precursor-product pair, and the data were modeled according to a physiological model to compare the different biliary clearances for the solely formed metabolite, [14C]enalaprilat, with that of preformed [3H]enalaprilat. With single-pass perfusion, the apparent extraction ratio (or biliary clearance) of formed [14C]enalaprilat was 15-fold the extraction ratio of preformed [3H] enalaprilat, an observation attributed to the presence of a barrier for cellular entry of the metabolite. Upon recirculation of bolus doses of [14C]enalapril and [3H]enalaprilat, the biliary clearance, estimated conventionally as metabolite excretion rate/midtime metabolite concentration, for formed [14C]enalaprilat was again 10-to 15-fold higher than the biliary clearance for preformed [3H]enalaprilat, but this decayed with perfusion time and gradually approached values for preformed [3H]enalaprilat. The decreasing biliary clearance of formed enalaprilat with recirculation was explained by the dual contribution of the circulating and intrahepatic metabolite (formed from circulating drug) to excretion. Physiological modeling predicted (i) an influx barrier (from blood to cell) at the sinusoidal membrane as the rate-limiting process in the overall removal of enalaprilat, (ii) a 15-fold greater extraction ratio or biliary clearance for formed [14C]enalaprilat over [3H]enalaprilat during single-pass perfusion, and (iii) the time-dependent and declining behaviour of the biliary clearance for formed [14C]enalaprilat during recirculation of the medium. In the absence of a direct knowledge of eliminating organs in vivo, this variable pattern for excretory clearance of the formed metabolite within the organ is indicative of a metabolite formation organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C R :

denotes the reservoir concentration

C In andC Out,L :

respectively, denote the input and output concentrations.

Q L :

is the total hepatic plasma flow rate.

Q Bile :

is the bile flow rate

f p and fL :

denote the unbound fractions in plasma and liver tissue, respectively

Cp :

is the concentration in renal plasma; CL is the concentration in liver;

C Bile :

is the concentration in bile.

v R,V p,V L, andV Bile :

denote the reservoir plasma, hepatic plasma, tissue, and bile volumes, respectively

CL ind andCL efd :

denote the influx and efflux clearances, respectively

CL mint,L ,L:

represents the hepatic metabolic intrinsic clearance of the drug

CL bint,L L:

denotes the biliary intrinsic clearance

References

  1. D. J. Tocco, F. A. De Luna, A. E. W. Duncan, T. C. Vassil, and E. H. Ulm. The physiological disposition and metabolism of enalapril maleate in laboratory animals.Drug Metab. Dispos. 10:15–19 (1982).

    CAS  PubMed  Google Scholar 

  2. I. A. M. de Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and its metabolite, enalaprilat, in the isolated red blood cell-perfused rat kidney.J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    PubMed  Google Scholar 

  3. I. A. M. de Lannoy, H. Hirayama, and K. S. Pang. A physiological model for renal drug metabolism: Enalapril esterolysis to enalaprilat in the isolated perfused rat kidney.J. Pharmacokin. Biopharm. 18:561–588 (1990).

    Article  Google Scholar 

  4. K. S. Pang, W. F. Cherry, and E. H. Ulm. Disposition of enalapril in the intestine-liver preparation: Absorption, metabolism, and first-pass effects.J. Pharmacol. Exp. Ther. 233:788–795 (1985).

    CAS  PubMed  Google Scholar 

  5. K. S. Pang, W. F. Cherry, J. A. Terrell, and E. H. Ulm. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation. Presence of a diffusional barrier into hepatocytes.Drug Metab. Dispos. 12:309–313 (1984).

    CAS  PubMed  Google Scholar 

  6. K. S. Pang, W. F. Cherry, F. Barker, III, and C. A. Goresky. Esterases for enalapril hydrolysis are concentrated in the perihepatic venous region of the rat liver.J. Pharmacol. Exp. Ther. 257:294–301 (1991).

    CAS  PubMed  Google Scholar 

  7. A. J. Schwab, F. Barker, III, C. A. Goresky, and K. S. Pang. Transfer of enalaprilat across rat liver cell membranes is barrier-limited.Am. J. Physiol. 258:G461-G475 (1990).

    CAS  PubMed  Google Scholar 

  8. A. J. Schwab, I. A. M. de Lannoy, K. Poon, C. A. Goresky, and K. S. Pang. Enalaprilat handling by the rat kidney: barrier-limited cell entry.Am. J. Physiol. 263(Renal Fluid Electrolyte Physiol.32):F858-F869 (1992).

    CAS  PubMed  Google Scholar 

  9. I. A. M. de Lannoy and K. S. Pang. Commentary: presence of a diffusional barrier on metabolite kinetics: Enalaprilat as a generatedversus preformed metabolite.Drug Metab. Dispos. 14:513–520 (1986).

    PubMed  Google Scholar 

  10. I. A. M. de Lannoy and K. S. Pang. Effect of diffusional barriers on drug and metabolite kinetics.Drug Metab. Dispos. 15:51–58 (1987).

    PubMed  Google Scholar 

  11. S. Miyauchi, Y. Sugiyama, T. Iga, and M. Hanano. Membrane-limited transport of the conjugative metabolites of 4-methylumbelliferone in rats.J. Pharm. Sci. 77:688–692 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. J. W. Steele, B. Yagen, O. Hernandez, R. H. Cox, B. R. Smith, and J. R. Bend. The metabolism and excretion of styrene oxideglutathione conjugates in the rat and by isolated perfused liver, lung and kidney preparations.J. Pharmacol. Exp. Ther. 219:35–41 (1981).

    CAS  PubMed  Google Scholar 

  13. L. A. Spry, T. V. Zenser, S. M. Cohen, and B. B. Davis. Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat.J. Clin. Invest. 76:1025–1031 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. C. A. Goresky, K. S. Pang, A. J. Schwab, F. Barker, III, W. F. Cherry, and G. G. Bach. Uptake of a protein-bound, polar compound, acetaminophen sulfate, by perfused rat liver.Hepatology 15:173–190 (1992).

    Article  Google Scholar 

  15. R. J. Henry, N. Chiamori, O. J. Golub, and S. Berkman. Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic trans-aminase and lactic acid dehydrogenase.Am. J. Clin. Pathol. 34:381–398 (1960).

    CAS  PubMed  Google Scholar 

  16. J. W. Severinghaus. Blood gas calculator.J. Appl. Physiol. 21:1108–1116 (1966).

    CAS  PubMed  Google Scholar 

  17. R. M. Winslow, M.-L. Swenberg, R. L. Berger, R. I. Shrager, M. Luzzana, M. Samaja, and L. Rossi-Bernardi. Oxygen equilibrium curve of normal human blood and its evaluation by Adair's equation.J. Biol. Chem. 252:2331–2337 (1977).

    CAS  PubMed  Google Scholar 

  18. K. S. Pang, W. F. Lee, W. F. Cherry, V. Yuen, J. Accaputo, S. Fayz, A. J. Schwab, and C. A. Goresky. Effects of perfusate flow rate on measured blood volume, Disse space, intracellular water spaces, and drug extraction in the perfused rat liver preparation: charac-terization by the technique of multiple indicator dilution technique.J. Pharmacokin. Biopharm. 16:595–632 (1988).

    Article  CAS  Google Scholar 

  19. M. V. St-Pierre, W.-F. Lee, C. A. Goresky, and K. S. Pang. The multiple indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions.Hepatology 9:285–296 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. J. Reichen and G. Paumgartner. Excretory function of the liver. In N. B. Javitt (ed.),Liver and Biliary Tract Physiology I. International Review of Physiology, Vol. 21, University Park Press, Baltimore, 1980, pp. 103–150.

    Google Scholar 

  21. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1977).

    Article  Google Scholar 

  22. I. Bartosek, A. Guaitani, and S. Garattini. Long-term perfusion of isolated rat liver.Pharm-acology 8:244–258 (1972).

    Article  CAS  Google Scholar 

  23. I. Bartosek, A. Guaitani, and L. L. Miller.Isolated Liver and Its Applications, Raven, New York, 1973.

    Google Scholar 

  24. B. D. Ross.Perfusion Techniques in Biochemistry. A Laboratory Manual, Clarendon, Oxford, 1972, pp. 135–257.

    Google Scholar 

  25. H. Schimassek. Perfusion of isolated rat liver with a semisynthetic medium and control of liver function.Life Sci. 11:629–634 (1962).

    Article  Google Scholar 

  26. R. Hems, B. D. Ross, M. N. Berry, and H. A. Krebs. Gluconeogenesis in the perfused rat liver.Biochem. J. 101:284–292 (1966).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. S. Keiding, H. Vilstrup, and L. Hansen. Importance of flow and haematocrit for metabolic function of perfused rat liver.Scand. J. Clin. Lab. Invest. 40:355–359 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. K. S. Pang and J. R. Gillette. Complications in the estimation of hepatic blood flowin vivo by pharmacokinetic parameters: The area under the curve after the concomitant intravenous and intraperitoneal (or intraportal) dose of acetaminophen in rat.Drug Metab. Dispos. 6:567–576 (1978).

    CAS  Google Scholar 

  29. R. W. Brauer. Liver circulation and function.Physiol. Rev. 43:115–213 (1963).

    CAS  PubMed  Google Scholar 

  30. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  31. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical consideration of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular activity on hepatic drug clearance.J. Pharma-cokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  32. I. A. M. de Lannoy and K. S. Pang. Combined recirculation of the rat liver and kidney: Studies with enalapril and enalaprilat.J. Pharmacokin. Biopharm. 21:423–456 (1993).

    Article  Google Scholar 

  33. S. Miyauchi, Y. Sugiyama, H. Sato, Y. Sawada, I. Iga, and M. Hanano. Effect of a diffusional barrier to a metabolite across hepatocytes on its kinetics in “enzyme-distributed” models: A computer-aided simulation study.J. Pharmacokin. Biopharm. 15:4:399–421 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Medical Research Council of Canada. I. A. M. de Lannoy was a recipient of the Ontario Graduate Fellowship from the Ontario Ministry of Health; K. S. Pang was a recipient of the Faculty Development Award, Medical Research Council, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lannoy, I.A.M., Barker, F. & Pang, K.S. Formed and preformed metabolite excretion clearances in liver, a metabolite formation organ: Studies on enalapril and enalaprilat in the single-pass and recirculating perfused rat liver. Journal of Pharmacokinetics and Biopharmaceutics 21, 395–422 (1993). https://doi.org/10.1007/BF01061689

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061689

Key words

Navigation