Skip to main content
Log in

Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

An in situ perfused rat liver system is useful for studying the hepatic disposition of drugs and their metabolites. However, the effects of the perfusion conditions on drug disposition are unclear. We examined the effects of conditions such as flow rate (13 or 26 mL/min) and bile acid on disposition of diclofenac (DF) as a model drug and DF metabolites [diclofenac-1-O-acyl glucuronide (DF-Glu) or 4′-hydroxydiclofenac (DF-4′OH)] in the absence of albumin. DF, DF-Glu, and DF-4′OH concentrations in the perfusate and cumulative amounts of DF-Glu excreted in bile were measured using high-performance liquid chromatography methods. DF in the perfusate was rapidly eliminated as the perfusate flow rate increased. The area under the plasma concentration–time curve from 0 to 60 min (AUC0–60) for DF-Glu and DF-4′OH in a perfusate containing bile acid was lower at a flow rate of 26 and 13 mL/min, respectively. The bile flow rate at 26 mL/min with 24 μM of bile acid in the perfusate was significantly higher (ca. 3.5 times) compared with that at 13 mL/min without bile acid. Cumulative biliary DF-Glu excretion was also dramatically affected by the flow rate and addition of bile acid. This study indicated that the flow rate and bile acid in the perfused rat liver were key factors for bile flow rate and DF, DF-Glu, and DF-4′OH disposition in the absence of albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banks AT, Zimmerman HJ, Ishak KG, Harter JG (1995) Diclofenac-associated hepatotoxicity: analysis of 180 cases reported to the Food and Drug Administration as adverse reactions. Hepatology 22:820–827

    Article  CAS  PubMed  Google Scholar 

  • Calhoun P, Brown KB, Strunk R, Krusch DA, Scheld WM, Hanks JB (1987) Experimental studies of biliary excretion of piperacillin. Ann Surg 205:420–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox JW, Cox SR, VanGiessen G, Ruwart MJ (1985) Ibuprofen stereoisomer hepatic clearance and distribution in normal and fatty in situ perfused rat liver. J Pharmacol Exp Ther 232:636–643

    CAS  PubMed  Google Scholar 

  • David G, Dalit ML, Fred MK, Moshe R (2013) The effect of dimethylethanolamine on hepatic and biliary phospholipid metabolism. J GHR 2:413–418

    Google Scholar 

  • Ebner T, Heinzel G, Prox A, Beschke K, Wachsmuth H (1999) Disposition and chemical stability of telmisartan 1-O-acylglucuronide. Drug Metab Dispos 27:1143–1149

    CAS  PubMed  Google Scholar 

  • Grillo MP, Hua F, Knutson CG, Ware JA, Li C (2003) Mechanistic studies on the bioactivation of diclofenac: identification of diclofenac-S-acyl-glutathione in vitro in incubations with rat and human hepatocytes. Chem Res Toxicol 16:1410–1417

    Article  CAS  PubMed  Google Scholar 

  • Hargus SJ, Amouzedeh HR, Pumford NR, Myers TG, McCoy SC, Pohl LR (1994) Metabolic activation and immunochemical localization of liver protein adducts of the non-steroidal anti-inflammatory drug diclofenac. Chem Res Toxicol 7:575–582

    Article  CAS  PubMed  Google Scholar 

  • Hussein Z, Evans AM, Rowland M (1993) Physiologic models of hepatic drug clearance: influence of altered protein binding on the elimination of diclofenac in the isolated perfused rat liver. J Pharm Sci 82:880–885

    Article  CAS  PubMed  Google Scholar 

  • Kindla J, Muller F, Mieth M, Fromm MF, Konig J (2011) Influence of non-steroidal anti-inflammatory drugs on organic anion transporting polypeptide (OATP) 1B1- and OATP1B3-mediated drug transport. Drug Metab Dispos 39:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • King C, Tang W, Ngui J, Tephly T, Braun M (2001) Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac. Toxicol Sci 61:49–53

    Article  CAS  PubMed  Google Scholar 

  • Kretz-Rommel A, Boelsterli UA (1993) Diclofenac covalent protein binding is dependent on acyl glucuronide formation and is inversely related to P450-mediated acute cell injury in cultured rat hepatocytes. Toxicol Appl Pharmacol 120:155–161

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Samuel K, Subramanlan R, Braun MP, Stearns RA, Chiu SH, Evans DC, Baillie TA (2002) Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther 303:969–978

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW, Daniels TR (1983) Differential effect of taurocholic acid on hepatic arterial resistance vessels and bile flow. Am J Physiol 244:G366–G369

    CAS  PubMed  Google Scholar 

  • Lickteig AJ, Fisher CD, Augustine LM, Aleksunes LM, Besselsen DG, Slitt AL, Manautou JE, Cherrington NJ (2007) Efflux transporter expression and acetaminophen metabolite excretion are altered in rodent models of nonalcoholic fatty liver disease. Drug Metab Dispos 35:1970–1978

    Article  CAS  PubMed  Google Scholar 

  • Manautou JE, de Waart DR, Kunne C, Zelcer N, Goedken M, Borst P, Elferink RO (2005) Altered disposition of acetaminophen in mice with a disruption of the Mrp3 gene. Hepatology 42:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Nobes MS, Ghabrial H, Simms KM, Smallwood RB, Morgan DJ, Sewell RB (2002) Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. J Gastroenterol Hepatol 17:598–605

    Article  PubMed  Google Scholar 

  • Ogilvie JW, Kaplan BH (1966) The inhibition of sterol biosynthesis in rat liver homogenates by bile. J Biol Chem 241:4722–4730

    CAS  PubMed  Google Scholar 

  • Pang KS, Lee WF, Cherry WF, Yuen V, Accaputo J, Fayz S, Schwab AJ, Goresky CA (1988) Effects of perfusate flow rate on measured blood volume, disse space, intracellular water space, and drug extraction in the perfused rat liver preparation: characterization by the multiple indicator dilution technique. J Pharmacokinet Biopharm 16:595–632

    Article  CAS  PubMed  Google Scholar 

  • Pumford NR, Myers TG, Davila JC, Highet RJ, Pohl LR (1993) Immunochemical detection of liver protein adducts of the non-steroidal anti-inflammatory drug diclofenac. Chem Res Toxicol 6:147–150

    Article  CAS  PubMed  Google Scholar 

  • Sabordo L, Sallustio BC, Evans AM, Nation RL (1999) Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-d-glucuronide: effects of dibromosulfophthalein on membrane transport and aglycone formation. J Pharmacol Exp Ther 288:414–420

    CAS  PubMed  Google Scholar 

  • Seitz S, Kretz-Rommel A, Oude Elferink RP, Boelsterli UA (1998) Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2). Chem Res Toxicol 11:513–519

    Article  CAS  PubMed  Google Scholar 

  • Small RE (1989) Diclofenac sodium. Clin Pharm 8:545–558

    CAS  PubMed  Google Scholar 

  • Snel CA, Pang KS, Mulder GJ (1995) Glutathione conjugation of bromosulfophthalein in relation to hepatic glutathione content in the rat in vivo and in the perfused rat liver. Hepatology 21:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Zhang R, Ngo SN, Davey AK (2006) Alteration of fexofenadine disposition in the rat isolated perfused liver following injection of bacterial lipopolysaccharide. Clin Exp Pharmacol Physiol 33:685–689

    Article  CAS  PubMed  Google Scholar 

  • Uno S, Fujii A, Komura H, Kawase A, Iwaki M (2008) Prediction of metabolic clearance of diclofenac in adjuvant-induced arthritis rats using a substrate depletion assay. Xenobiotica 38:482–495

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Kuhlmann O, Hung DY, Roberts MS (2000) Cytoplasmic binding and disposition kinetics of diclofenac in the isolated perfused rat liver. Br J Pharmacol 130:1331–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westley IS, Brogan LR, Morris RG, Evans AM, Sallustio BC (2006) Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 34:261–266

    Article  CAS  PubMed  Google Scholar 

  • Wolkoff AW, Johansen KL, Goeser T (1987) The isolated perfused rat liver: preparation and application. Anal Biochem 167:1–14

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Turner KC, Ward ES, Jansen PL, Brouwer KL (2000) Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(−) rats. J Pharmacol Exp Ther 295:512–518

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Tian X, Zhao R, Polli JW, Humphreys JE, Webster LO, Bridges AS, Kalvass JC, Brouwer KL (2005) Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos 33:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Humphreys JE, Tian X, Nezasa K, Brouwer KL (2006) Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J Pharmacol Exp Ther 319:459–467

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Iwaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uraki, M., Kawase, A., Matsushima, Y. et al. Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver. Eur J Drug Metab Pharmacokinet 41, 301–307 (2016). https://doi.org/10.1007/s13318-015-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0259-4

Keywords

Navigation