Skip to main content
Log in

Functional circuitry of the goldfish cerebellum

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The basic circuitry of the cerebellum of goldfish is similar to that in other vertebrates but with several special features. Deep nuclei are lacking and the axons of approximately 80% of Purkinje cells leave the cerebellum.

  2. 2.

    Responses of granule cells indicate much convergence of mossy fiber inputs. Some Purkinje cells give single simple spikes, others trains of spikes in response to mossy fiber or parallel fiber stimulation.

  3. 3.

    Inhibitory interneurons—stellate and Golgi cells—are characterized by high-frequency, ongoing spikes. Parallel fibers activate interneurons which inhibit granule cell responses to mossy input and which also inhibit Purkinje cells as indicated by IPSP's, interruption of spontaneity and of responses via mossy fiber-granule cell input.

  4. 4.

    Peduncle stimulation in deafferented preparations revealed Purkinje cell collateral inhibition of other Purkinje cells and of Golgi cells.

  5. 5.

    Climbing fiber stimulation elicits complex responses in Purkinje cells, often followed by inhibition and, in some cells, a late second excitatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariëns Kappers, C.U., Huber, G.C., Crosby, E.C. (eds.): The comparative anatomy of the nervous system of vertebrates, including man. 3 vols. New York: Hafner Publishing Co. 1967

    Google Scholar 

  • Bantli, H.: Differences between evoked potentials from climbing fibers in cerebellum of cat and turtle. J. Neurophysiol.37, 573–593 (1974)

    Google Scholar 

  • Bell, C.C., Kawasak, T.: Relations among climbing fiber responses of nearby Purkinje cells. J. Neurophysiol.35, 155–169 (1972)

    Google Scholar 

  • Bloedel, J.R., Gregory, R.S., Martin, S.H.: Action of interneurons and axon collaterals in cerebellar cortex of a primate. J. Neurophysiol.35, 847–863 (1972)

    Google Scholar 

  • Bloedel, J.R., Roberts, W.J.: Action of climbing fibers in cerebellar cortex of the cat. J. Neurophysiol.34, 17–31 (1971)

    Google Scholar 

  • Burg, D., Rubia, F.T.: Inhibition of cerebellar Purkinje cell by climbing fiber input. Pflügers Arch.337, 367–372 (1972)

    Google Scholar 

  • Eccles, J.C. (ed.): The physiology of synapses. Berlin-Göttingen-Heidelberg: Springer 1964

    Google Scholar 

  • Eccles, J.C., Ito, M., Szentagothai, J. (eds.): The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: Golgi cell inhibition on the cerebellar cortex. Nature (Lond.)204, 1265–1266 (1964)

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J. Physiol. (Lond.)182, 268–296 (1966a)

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: Parallel fiber stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res.1, 17–39 (1966b)

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: The mossy fiber granule cell relay of the cerebellum and its inhibitory control by Golgi cell. Exp. Brain Res.1, 82–101 (1966c)

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: The inhibitory interneurons in the cerebellar cortex. Exp. Brain Res.1, 1–16 (1966f)

    Google Scholar 

  • Eccles, J.C., Llinas, R., Sasaki, K.: The action of antidromic impulses on the cerebellar Purkinje cells. J. Physiol. (Lond.)182, 316–345 (1966g)

    Google Scholar 

  • Eccles, J.C., Sasaki, K., Strata, P.: The profiles of physiological events produced by a parallel fiber volley on the cerebellar cortex. Exp. Brain Res.2, 18–34 (1966e)

    Google Scholar 

  • Eccles, J.C., Sasaki, K., Strata, P.: Interpretation of the potential fields generated in the cerebellar cortex by a mossy fiber volley. Exp. Brain Res.3, 58–80 (1967)

    Google Scholar 

  • Eccles, J.C., Taborikova, H., Tsukahara, N.: Response of the Purkinje cells of a selachian cerebellum (Mustelus canis). Brain Res17, 57–86 (1970a)

    Google Scholar 

  • Eccles, J.C., Taborikova, H., Tsukahara, N.: Response of the granule cells of the selachian cerebellum (Mustelus canis). Brain Res.17, 87–102 (1970b)

    Google Scholar 

  • Fox, C.A., Hillman, D.E., Siegesmund, K.A., Dutta, C.R.: The primate cerebellar cortex: A Golgi and electron microscopic study. In: The cerebellum (eds. C.A. Fox, and R.S. Snider). Progr. Brain Res.25, 174–225 (1967)

  • Friedlander, M.J., Kotchabhakdi, N., Prosser, C.L.: Effects of cold and heat on behavior and cerebellar function in goldfish. J. comp. Physiol.112, 19–45 (1976)

    Google Scholar 

  • Granit, R., Phillips, C.G.: Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (Lond.)133, 520–547 (1956)

    Google Scholar 

  • Hackett, J.T.: Electrophysiological properties of neuronal circuits in the frog cerebellum in vitro. Brain Res.48, 385–389 (1972)

    Google Scholar 

  • Harmori, J., Szentagothai, J.: Identification of synapses formed in the cerebellar cortex by Purkinje cell axon collaterals: An electron microscope study. Exp. Brain Res.2, 35–48 (1968)

    Google Scholar 

  • Ito, M., Obata, K., Ochi, R.: The origin of cerbellar induced inhibition of Deiter neurones. II. Temporal correlation between the transynaptic activation of Purkinje cells and the inhibition of Deiter neurones. Exp. Brain Res.2, 350–364 (1966)

    Google Scholar 

  • Ito, M., Yoshida, M.: The origin of cerebellar-induced inhibition of Deiter neurones. Monosynaptic initiation of the inhibitory post-synaptic potentials. Exp. Brain Res.2, 330–349 (1966)

    Google Scholar 

  • Jansen, J.K.S., Rudjord, T.: Dorsal spinocerebellar tract: Response pattern of nerve fibers to muscle stretch. Science149, 1109–1111 (1965)

    Google Scholar 

  • Kennedy, D.T., Shimono, T., Kitai, S.T.: Parallel fiber and white matter activation of Purkinje cells in a reptilian cerebellum (Lacerta viridis). Brain Res.22, 381–385 (1970)

    Google Scholar 

  • Kidokoro, Y.: Direct inhibitory innervation of teleost oculomotor neurons by cerebellar Purkinje cells. Brain Res.10, 453–456 (1968)

    Google Scholar 

  • Kidokoro, Y.: Cerebellar and vestibular control of fish oculomotor neurons. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 257–276. Chicago, Illinois: Amer. Med. Assoc. 1969

    Google Scholar 

  • Kitai, S.T., Shimono, T., Kennedy, D.T.: Inhibition in the cerebellar cortex of the lizard,Lacerta viridis. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas). Chicago: Amer. Med. Assoc. 1969

    Google Scholar 

  • Kotchabhakdi, N.: Functional organization of the goldfish cerebellum. Information processing of input from peripheral sense organs. J. comp. Physiol.112, 75–93 (1976)

    Google Scholar 

  • Kwan, H.C., Murphy, J.T.: Extracellular current density analysis of responses in cerebellar cortex to climbing fiber activation. J. Neurophysiol.37, 333–344 (1974)

    Google Scholar 

  • Larsell, O. (ed.): The comparative anatomy and histology of the cerebellum. Minneapolis: The University of Minnesota 1967

  • Larsell, O. (ed.): The comparative anatomy and histology of the cerebellum. Minneapolis: The University of Minnesota Press 1970

  • Latham, A., Paul, D.H.: Spontaneous activity of cerebellar Purkinje cells and their response to impulses in climbing fibers. J. Physiol. (Lond.)213, 135–156 (1971)

    Google Scholar 

  • Llinas, R., Bloedel, J.R.: Climbing fiber activation of Purkinje cells in the frog cerebellum. Brain Res.3, 299–302 (1967a)

    Google Scholar 

  • Llinas, R., Bloedel, J., Hillman, D.E.: Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol.32, 847–870 (1969a)

    Google Scholar 

  • Llinas, R., Bloedel, J.R., Roberts, W.: Antidromic invasion of Purkinje cells in frog cerebellum. J. Neurophysiol.32, 881–891 (1969b)

    Google Scholar 

  • Llinas, R., Hillman, D.E., Precht, W.: Functional aspects of cerebellar evolution. In: The cerebellum in health and disease (eds. W.S. Field, W.D. Willis), pp. 269–291. St. Louis, Missouri: Warren H. Green, Inc. Pub. 1970

    Google Scholar 

  • Llinas, R., Hillman, D.H.: Physiological and morphological organization of the cerebellar circuit in various vertebrates. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 43–73. Chicago, Illinois: Amer. Med. Assoc. 1969

    Google Scholar 

  • Llinas, R., Nicholson, C.N.: Electrophysiological analysis of alligator cerebellum: A study on dendritic spikes. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 431–465. Chicago, Illinois: Amer. Med. Assoc. 1969

    Google Scholar 

  • Llinas, R., Nicholson, C.N., Freeman, J.A., Hillman, D.E.: Dendritic spikes and their inhibition in alligator Purkinje cells. Science160, 1132–1135 (1968)

    Google Scholar 

  • Llinas, R., Nicholson, C.N., Precht, W.: Preferred centripetal conduction of dendritic spikes in alligator Purkinje cells. Science163, 186–187 (1969c)

    Google Scholar 

  • Llinas, R., Precht, W.: Recurrent facilitation by disinhibition in Purkinje cells of the cat cerebellum. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 619–627. Chicago, Illinois: Amer. Med. Assoc. 1969a

    Google Scholar 

  • Martinez, F.E., Crill, W.E., Kennedy, T.T.: Electrogenesis of cerebellar Purkinje cell response in cats. J. Neurophysiol.34, 348–356 (1971)

    Google Scholar 

  • Murphy, J.T., Sabah, N.H.: Inhibitory effects of climbing fiber activation upon cerebellar Purkinje cells. Brain Res.19, 486–490 (1970a)

    Google Scholar 

  • Murphy, J.T., Sabah, N.H.: Cerebellar Purkinje cell responses to afferent inputs. I. Climbing fiber activity. Brain Res.25, 449–467 (1971a)

    Google Scholar 

  • Murphy, J.T., Sabah, N.H.: Cerebellar Purkinje cell response to afferent inputs. II. Mossy fiber activation. Brain Res25, 469–482 (1971b)

    Google Scholar 

  • Nicholson, C., Llinas, R.: Inhibition of Purkinje cells in the cerebellum of elasmobranch fishes. Brain Res.12, 477–481 (1969)

    Google Scholar 

  • Nicholson, C.H., Llinas, R., Precht, W.: Neural elements of the cerebellum in elasmobranch fishes: Structural and functional characteristics. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 215–243. Chicago, Illinois: Amer. Med. Assoc. 1969

    Google Scholar 

  • Nieuwenhuys, R., Nicholson, C.H.: A survey of the general morphology, the fiber connections and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 135–170. Chicago, Illinois: Amer. Med. Assoc. 1969a

    Google Scholar 

  • Nieuwenhuys, R., Nicholson, C.H.: Aspects of the histology of the cerebellum of mormyrid fishes. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), pp. 135–169. Chicago, Illinois: Amer. Med. Assoc. 1969b

    Google Scholar 

  • Oscarsson, O.: Functional organization of spinocerebellar paths. In: Handbook of sensory physiology, Vol. II (ed. A. Iggo), pp. 121–127. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Peterson, R.: Electrical response of the goldfish cerebellum. I. Response to parallel fiber and peduncle stimulation. Brain Res.47, 67–79 (1972)

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés tome II, 993 pp. Paris: Maloine 1911

    Google Scholar 

  • Reid, M.D., Westerman, R.A.: Purkinje cell giant spikes in trout,Salmo gairdneri. Comp. Biochem Physiol.50A, 253–257 (1975)

    Google Scholar 

  • Rushmer, D.S., Woodward, D.J.: Inhibition of Purkinje cells in the frog cerebellum. I. Evidence for a stellate cell inhibitory pathway. Brain Res.33, 83–90 (1971)

    Google Scholar 

  • Schnitzlein, H.N., Faucette, J.R.: General morphology of the fish cerebellum. In: Neurobiology of cerebellar evolution and development (ed. R. Llinas), Chicago, Illinois: Amer. Med. Assoc. 1969

    Google Scholar 

  • Thach, W.T.: Somatosensory receptive fields of single units in the cat cerebellar cortex. J. Neurophysiol.30, 675–696 (1967)

    Google Scholar 

  • Voorhoeve, P.E.: Intracerebellar inhibitory systems. In: The cerebellum (eds. C.A. Fox, R.S. Snider). Progr. Brain Res.29, 251–267 (1967)

  • Waks, M.D., Westerman, R.A.: Inhibition of Purkinje cells in the cerebellum of the teleostSalmo gairdneri. Comp. Biochem. Physiol.3, 465–469 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of Rockefeller Foundation

This research was part of a Ph.D. thesis in Neural and Behavioral Biology, University of Illinois, 1975. Advice from Professor C. Ladd Prosser is acknowledged. Support was from Rockefeller Foundation and from NSF grant BMS-01587 to C.L. Prosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotchabhakdi, N. Functional circuitry of the goldfish cerebellum. J. Comp. Physiol. 112, 47–73 (1976). https://doi.org/10.1007/BF00612675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612675

Keywords

Navigation