Skip to main content

Simple Spikes and Complex Spikes

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Cerebellar Purkinje neurons communicate with downstream circuit elements by generating two distinct types of electrical activity. Purkinje neurons fire conventional action potentials, termed simple spikes, and they also intermittently fire a highly stereotyped burst of decrementing spikes, called a complex spike. Each of these types of electrical activity arises from an interaction between synaptic input and distinct excitability mechanisms intrinsic to Purkinje neurons. Simple spikes occur at very high frequencies in the range of 50 spikes per second and are driven by pacemaking ion channels expressed by Purkinje neurons. This high simple spike rate is then modulated by excitatory and inhibitory synaptic input. Complex spikes occur in response to excitatory synaptic input from the climbing fiber; these compound electrical events are driven in part by the large voltage-gated calcium conductance in the dendrites of Purkinje neurons. Finally, the two forms of excitability interact; complex spikes can exert indirect effects on simple spike firing rate. Together, these two firing behaviors endow Purkinje neurons with a range of signaling behaviors critical for cerebellar contributions to motor coordination and motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barmack NH, Yakhnitsa V (2011) Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 17:221–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32:1044–1055

    CAS  PubMed  Google Scholar 

  • Cerminara NL, Rawson JA (2004) Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci 24:4510–4517

    Article  CAS  PubMed  Google Scholar 

  • Davie JT, Clark BA, Hausser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles J, Llinas R, Sasaki K (1964) Excitation of cerebellar Purkinje cells by the climbing fibres. Nature 203:245–246

    Article  CAS  PubMed  Google Scholar 

  • Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hansen ST, Meera P, Otis TS, Pulst SM (2013) Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet 22:271–283

    Article  CAS  PubMed  Google Scholar 

  • Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  CAS  PubMed  Google Scholar 

  • Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A, Cheron G, Orr HT, Pandolfo M, Schiffmann SN (2011) Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 31:11795–11807

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Hausser M (2011) Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci 31:10847–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina M, Metz AE, Bean BP (2007) Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin. J Neurophysiol 97:563–571

    Article  CAS  PubMed  Google Scholar 

  • Mathews PJ, Lee KH, Peng Z, Houser CR, Otis TS (2012) Effects of climbing fiber driven inhibition on Purkinje neuron spiking. J Neurosci 32:17988–17997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A 83:5349–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11:1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otis TS, Mathews PJ, Lee KH, Maiz J (2012) How do climbing fibers teach? Front Neural Circ 6:95

    Google Scholar 

  • Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674

    CAS  PubMed  Google Scholar 

  • Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881–891

    Article  CAS  PubMed  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL (2011) Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 31:13002–13014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swensen AM, Bean BP (2003) Ionic mechanisms of burst firing in dissociated Purkinje neurons. J Neurosci 23:9650–9663

    CAS  PubMed  Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Otis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otis, T.S. (2016). Simple Spikes and Complex Spikes. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_40

Download citation

Publish with us

Policies and ethics