Skip to main content
Log in

Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS]

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of two poly (acrylonitrile-butadiene-styrene) [ABS] resins have been strained in tension, and the ensuing deformation has been characterized by transmission electron microscopy. To enhance contrast of the rubber particles, some of the specimens were stained with OsO4. Films containing only solid rubber particles 0.1 μm in diameter show little tendency for crazing. Instead, cavitation of the rubber particles occurs, together with localized shear deformation between the particles along a direction nearly normal to the tensile axis. For specimens containing a mixture of the same small particles plus larger (1.5μm diameter) particles containing glassy occlusions, some crazing does occur. Crazes tend to nucleate at the larger particles only. When crazes encounter the smaller particles these cavitate without appearing to impede or otherwise affect the craze growth. The occluded particles also show significant cavitation, with voids forming at their centres at sufficiently high levels of strain. These voids do not seem to lead to rapid craze break-down and crack propagation. In commercial ABS, which typically has both large and small rubber particles, both crazing, nucleated by the large particles, and shear deformation, encouraged by the cavitation of small rubber particles, can be expected to make important contributions to the toughness of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Bucknall, “Toughened Plastics” (Applied Science Publishers, London, 1977) 1.

    Google Scholar 

  2. K. Kato, J. Elect. Micros. 14 (1965) 220.

    Google Scholar 

  3. Idem, Polymer Lett. 4 (1966) 35.

    Google Scholar 

  4. M. Matsuo, C. Nozaki and Y. Jyo, Polymer Eng. Sci. 9 (1969) 197.

    Google Scholar 

  5. H. Breuer, F. Haaf and J. Stabenow, J. Macromol. Sci. Phys. B14 (1977) 387.

    Google Scholar 

  6. S. L. Aggarwal and R. A. Livigni, Polymer Eng. Sci. 17 (1977) 498.

    Google Scholar 

  7. S. L. Rosen, ibid. 7 (1967) 115.

    Google Scholar 

  8. M. Matsuo, A. Ueda and Y. Kondo, Polymer Eng. Sci. 10 (1970) 253.

    Google Scholar 

  9. C. B. Bucknall and R. R. Smith, Polymer 6 (1965) 471.

    Google Scholar 

  10. M. Matsuo, Polymer Eng. Sci. 9 (1970) 206.

    Google Scholar 

  11. C. B. Bucknall and D. Clayton, J. Mater. Sci. 7 (1972) 202.

    Google Scholar 

  12. C. B. Bucknall, D. Clayton and W. C. Keast, ibid. 7 (1972) 1443.

    Google Scholar 

  13. P. Beahan, A. Thomas and M. Bevis, ibid. 11 (1976) 1207.

    Google Scholar 

  14. E. J. Kramer, in “Polymer Compatibility and Incompatibility: Principles and Practices” edited by K. Solc, (MMI Press, Midland, MI, USA, 1982).

    Google Scholar 

  15. B. D. Lauterwasser and E. J. Kramer, Phil. Mag. 39A (1979) 469.

    Google Scholar 

  16. A. M. Donald and E. J. Kramer, J. Appl. Polymer. Sci., to be published.

  17. Idem, J. Mater. Sci. 17 (1982) to be published.

  18. C. B. Bucknall and I. C. Drinkwater, J. Mater. Sci. 8 (1973) 1800.

    Google Scholar 

  19. P. Beahan, A. Thomas and M. Bevis, J. Mater. Sci. 11 (1976) 1207.

    Google Scholar 

  20. F. Ramsteiner, Polymer 20 (1979) 839.

    Google Scholar 

  21. F. Haaf, H. Brewer and J. Stabenow, Angew Makrolmol. Chem. 58/59 (1977) 95.

    Google Scholar 

  22. A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 2967.

    Google Scholar 

  23. Idem, J. Polymer Sci. Polymer Phys. Ed. to be published.

  24. Idem, Polymer, to be published.

  25. H. Breuer, J. Stabenow and F. Haaf, Proceedings of the Conference on Toughening of Plastics, London, July 1978, (Plastics and Rubber Institute, London, 1978) Paper 13.

    Google Scholar 

  26. A. M. Donald and E. J. Kramer, Phil. Mag. 43A (1981) 857.

    Google Scholar 

  27. A. M. Donald, T. Chan and E. J. Kramer, J. Mater. Sci. 16 (1981) 669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donald, A.M., Kramer, E.J. Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS]. J Mater Sci 17, 1765–1772 (1982). https://doi.org/10.1007/BF00540805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540805

Keywords

Navigation