Skip to main content
Log in

The mammalian pineal organ: Electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The architecture of the pineal organ (epiphysis cerebri) of cats and monkeys (Macaca mulatta and Saimiri spec.) is basically similar to that of the central nervous tissue. The parenchyma consists of two cell types: the pinealocyte, which seems to be a specialized kind of neuronal cell rather than a secretory cell. The second type is composed of glial cells, primarily filamentous astrocytes, which separate the pinealocytes from the perivascular and subarachnoid space. Pinealocytes and astrocytes form cell clusters around extensions of the extracellular space and some pinealocytes show a certain polarity between such cavities and the perivascular compartment. In the cat and Rhesus monkey this polarity is not so obvious. Pinealocytes of the cat probably do not have more than one or two cell processes, while in the monkey pineal organ a multipolar type of pinealocyte occurs. Pinealocyte processes often end with terminals inside the parenchyma, having contact with other pinealocytes or their processes. Sometimes they terminate close to the perivascular space (especially in the squirrel monkey), or they seem to enter the perivascular space. Since most such processes are still covered by thin glial cell processes, they are actually not constituents of the space. However, there are occasional processes which do penetrate this glial barrier, and hence become part of the perivascular space. These have been found in all regions of cat and monkey pineal organ. In the Rhesus and squirrel monkey, many pineal cell processes terminate with endings containing dense bodies which may be a neurohumoral product. Endings of pinealocyte processes within the parenchyma contain vesicles, “synaptic ribbons” and some mitochondria. Sympathetic nerve fibers course through the perivascular space to be distributed throughout the pineal organ. However, they contact pinealocytes and pinealocyte processes outside the perivascular space after entering the parenchyma through an interruption of the glial barrier. Nerve fibers and endings contain numerous empty and granulated vesicles and, in addition, a few larger granulated vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E.: The anatomy of bovine and ovine pineals. Light and electron microscopic studies. J. Ultrastruct. Res., Suppl. 8, 1–80 (1965).

    Google Scholar 

  • Ariëns Kappers, J.: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In: J. Ariëns Kappers and J. P. Schadé, Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 87–153 (1965).

  • Arstila, A. U.: Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinology, Suppl. 2, 1–101 (1967).

    Google Scholar 

  • —, and V. K. Hopsu: Studies on the rat pineal gland. I. Ultrastructure. Ann. Acad. Sci. fenn., Ser. A, V. 113, 1–21 (1964).

    Google Scholar 

  • Bertler, A., B. Falck, and Ch. Owman: Cellular localization of 5-hydroxytryptamine in the rat pineal gland. Kungl. Fysiogr. Sällsk. Lund Förh. 33, 13–16 (1963).

    Google Scholar 

  • —: Studies on 5-hydroxytryptamine stores in pineal gland of rat. Acta physiol. scand. 63, Suppl. 239, 1–18 (1964).

    Google Scholar 

  • Cottrell, G. A., and M. Maser: Subcellular localization of 5-hydroxytryptamine and substance X in molluscan ganglia. Comp. Biochem. Physiol. 20, 901–906 (1967).

    Google Scholar 

  • De Robertis, E.: Histophysiology of synapses and neurosecretion. In: P. Alexander and Z. M. Bacq: Int. Ser. Monogr. Pure and Appl. Biol., vol. 20. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1964.

    Google Scholar 

  • —, and C. M. Franchi: Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J. biophys. biochem. Cytol. 2, 309–318 (1956).

    Google Scholar 

  • —, and A. Pellegrino de Iraldi: Plurivesicular secretory processes and nerve endings in the pineal gland of the rat. J. biophys. biochem. Cytol. 10, 361–372 (1961).

    Google Scholar 

  • Duncan, D., and G. Micheletti: Notes on the fine structure of the pineal organ of cats. Tex. Rep. Biol. Med. 24, 576–587 (1966).

    Google Scholar 

  • Falck, B., Ch. Owman, and E. Rosengren: Changes in rat pineal stores of 5-hydroxytryptamine after inhibition of its synthesis or break-down. Acta physiol. scand. 67, 300–305 (1966).

    Google Scholar 

  • Fine, B. S.: Synaptic lamellas in the human retina: an electron microscopic study. J. Neuropath. exp. Neurol. 22, 255–262 (1963).

    Google Scholar 

  • Gusek, W., u. A. Santoro: Elektronenoptische Beobachtungen zur Ultramorphologie der Pinealzellen bei der Ratte. Arch. Int. di Biol. norm. e pat. 13, 451–464 (1960).

    Google Scholar 

  • —: Zur Ultrastruktur der Epiphysis cerebri der Ratte. Endokrinologie 41, 105–129 (1961).

    Google Scholar 

  • H. Buss u. H. Wartenberg: Weitere Untersuchungen zur Feinstruktur der Epiphysis cerebri normaler und vorbehandelter Ratten. In: J. Ariëns Kappers and J. P. Schadé: Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 317–331 (1965).

  • Hakanson, R., and Ch. Owman: Pineal dopa decarboxylase and monoamine oxidase activities as related to the monoamine stores. J. Neurochem. 13, 597–605 (1966).

    Google Scholar 

  • Herndon, R. M.: The fine structure of the Purkinje cell. J. Cell Biol. 18, 167–180 (1963).

    Google Scholar 

  • Hopsu, V. K., and A. U. Arstila: An apparent somato-somatic synaptic structure in the pineal gland of the rat. Exp. Cell Res. 37, 484–487 (1965).

    Google Scholar 

  • Hülsemann, M.: Vergleichende histologische Untersuchungen über das Vorkommen von Gliafasern in der Epiphysis cerebri von Säugetieren. Acta anat. (Basel) 66, 249–278 (1967).

    Google Scholar 

  • Kelly, D. E., and S. W. Smith: Fine structure of the pineal organs of the adult frog, Rana pipiens. J. Cell Biol. 22, 653–674 (1964).

    Google Scholar 

  • Kusche, P.: Über Ependym und Gliafasern in der Epiphyse der erwachsenen Katze. Z. Zellforsch. 71, 405–414 (1966).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • —: Appearance of lateral chromatic aberration with metal-stained thin sections, and the compensation of this field error. J. appl. Physics 34, 2513 (1963).

    Google Scholar 

  • Machado, A. B. M.: Ultrastructure of the pineal body of the newborn rat. Anat. Rec. 154, 381 (1966).

    Google Scholar 

  • Milofsky, A.: The fine structure of the pineal in the rat, with special reference to the parenchyma. Anat. Rec. 127, 435–436 (1957).

    Google Scholar 

  • Mountford, Sh.: Filamentous organelles in receptor-bipolar synapses of the retina. J. Ultrastruct. Res. 10, 207–216 (1964).

    Google Scholar 

  • Oksche, A., u. M. Vaupel-von Harnack: Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri von Rana esculenta L. Z. Zellforsch. 59, 582–614 (1963).

    Google Scholar 

  • —: Elektronenmikroskopische Untersuchungen an den Nervenbahnen des Pinealkomplexes von Rana esculenta L. Z. Zellforsch. 68, 389–426 (1965).

    Google Scholar 

  • Owman, Ch.: Localization of neuronal and parenchymal monoamines under normal and experimental conditions in the mammalian pineal gland. In: J. Ariëns Kappers and J. P. Schadé, Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 423–453 (1965).

  • Pellegrino de Iraldi, A., L. M. Zieher, and E. de Robertis: Ultrastructure and pharmacological studies of nerve endings in the pineal organ. In: J. Ariëns Kappers and J. P. Schade: Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 389–422 (1965).

  • Reynolds, E. S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Rodin, A. E., and R. A. Turner: The relationship of intravesicular granules to the innervation of the pineal gland. Lab. Invest. 14, 1644–1651 (1965).

    Google Scholar 

  • Rosenbluth, J.: The fine structure of acoustic ganglia in the rat. J. Cell Biol. 12, 329–359 (1962a).

    Google Scholar 

  • —: Subsurface cisterns and their relationship to the neuronal plasma membrane. J. Cell Biol. 13, 405–421 (1962b).

    Google Scholar 

  • Sano, Y., u. T. Mashimo: Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri beim Hund. Z. Zellforsch. 69, 129–139 (1966).

    Google Scholar 

  • Smith, C. A., and F. S. Sjöstrand: Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial sections. J. Ultrastruct. Res. 5, 523–556 (1961).

    Google Scholar 

  • Wartenberg, H.: Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri der Katze. Verh. Anat. Ges., Wien 1964. Erg.-Heft Anat. Anz. 115, 275–279 (1965).

    Google Scholar 

  • —: Electron microscopic studies on nerve and glia processes and their relations to cells and vessels of the mammalian pineal organ. Anat. Rec. 154, 439 (1966).

    Google Scholar 

  • —, u. W. Gusek: Elektronenmikroskopische Untersuchungen über die Epiphysis cerebri des Kaninchens. Verh. Anat. Ges., München 1963. Erg.Heft Anat. Anz. 113, 173–181 (1964).

    Google Scholar 

  • - - Licht- und elektronenmikroskopische Beobachtungen über die Struktur der Epiphysis cerebri des Kaninchens. In: J. Ariëns Kappers and J. P. Schadé; Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 296–316 (1965).

  • Wolfe, D. E.: The epiphysial cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. In: J. Ariëns Kappers and J. P. Schadé; Structure and function of the Epiphysis cerebri. Progr. in Brain Res. 10, 332–386 (1965).

  • Wurtman, R., D. E. Kelly, and G. Axelrod: Pineal organs. New York: Academic Press 1968 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation has been supported by USPHS International Postdoctoral Research Fellowship F 05-TW-975-01 from the National Institutes of Health. The author wishes to acknowledge with thanks the hospitality of the Department of Biological Structure, University of Washington, providing facilities, technical assistance and secretarial help by Mrs. Doris Ringer, and also the kind interest of Dr. N. B. Everett and Dr. Douglas N. Kelly who critically red the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartenberg, H. The mammalian pineal organ: Electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Zeitschrift für Zellforschung 86, 74–97 (1968). https://doi.org/10.1007/BF00340360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340360

Keywords

Navigation