Skip to main content
Log in

GFAP- and Vimentin-Immunopositive Structures in Human Pineal Gland

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The pineal gland plays a key role in coordinating various bodily functions. The majority of pineal cells are pinealocytes, and the second largest group are glial cells, the data on which are contradictory. The present work is undertaken to study astroglial cells of the human pineal gland using an immunohistochemical method with transmitted light microscopy and, for the first time, confocal laser microscopy. Astrocytes were labeled with antibodies to glial fibrillary acidic protein (GFAP) and vimentin. A large number of GFAP- and vimentin-immunopositive structures have been found in the human pineal gland. GFAP was localized in polygonal cells located in lobules among pinealocytes, while vimentin was localized in blood vessels and rounded cells localized mainly in trabeculae and partially in pineal lobules. Both GFAP- and vimentin-immunoreactive cells had several long branching processes that penetrated the entire pineal parenchyma, forming a dense network, and ended on the surface of the pineal gland, blood vessels, and around calcifications. GFAP-immunoreactive fibers tightly entwined all calcifications (singly and in groups), while vimentin-immunopositive processes surrounded only a part of them. The study of consecutive sections of the pineal gland showed that the coincidence of the localization of GFAP and vimentin for pineal cells is not typical. It can be supposed that, in the human pineal gland, there are two separate populations of astrocyte-like cells, GFAP- or vimentin-containing, which differ not only cytochemically, but also in morphological features and localization of cell bodies, as well as in the location of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Baconnier, S., Lang, S.B., Polomska, M., Hilczer, B., Berkovic, G., and Meshulam, G., Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies, Bioelectromagnetics, 2002, vol. 23, p. 488. https://doi.org/10.1002/bem.10053

    Article  CAS  PubMed  Google Scholar 

  2. Boya, J. and Calvo, J.L., Immunohistochemical study of the pineal astrocytes in the postnatal development of the cat and dog pineal gland, J. Pineal Res., 1993, vol. 15, p. 13. https://doi.org/10.1111/j.1600-079x.1993.tb00504.x

    Article  CAS  PubMed  Google Scholar 

  3. Butt, A. and Verkhratsky, A., Neuroglia: realising their true potential, Brain Neurosci. Adv., 2018, vol. 2, p. 2398212818817495. https://doi.org/10.1177/2398212818817495

    Article  PubMed  PubMed Central  Google Scholar 

  4. Calvo, J., Boya, J., Borregon, A., and Garcia-Mauriño, J.E., Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study, Anat. Rec., 1988, vol. 220, p. 424. https://doi.org/10.1002/ar.1092200412

    Article  CAS  PubMed  Google Scholar 

  5. Csaki, A, Koves, K, Kiss, A.L., Rohlich, P., Boldogkoi, Z., Vereczki, V., Puskar, Z., Tombacz, D., and Csabai, Z., Pinealocytes cannot transport neurotropic viruses. Pinealo-to-retinal connection in prepubertal rats originates from pineal neurons: Light and electron microscopic immunohistochemical studies, Neurosci. Lett., 2021, vol. 23, p. 135517. https://doi.org/10.1016/j.neulet.2020.135517

    Article  CAS  Google Scholar 

  6. Dossi, E., Vasile, F., and Rouach, N., Human astrocytes in the diseased brain, Brain Res. Bull., 2018, vol. 136, p. 139. https://doi.org/10.1016/j.brainresbull.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fedorova, E.A., Sufieva, D.A., Grigorev, I.P., and Korzhevskii, D.E., Mast cells of the human pineal gland, Adv. Gerontol., 2018, vol. 9, p. 62. https://doi.org/10.1134/S2079057019010053

    Article  Google Scholar 

  8. Fernández-Blanco, Á. and Dierssen, M., Rethinking intellectual disability from neuro-to astro-pathology, Int. J. Mol. Sci., 2020, vol. 21, p. 9039. https://doi.org/10.3390/ijms21239039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fokin, E.I., Savel’ev, S.V., Gulimova, V.I., Asadchikov, E.V., Senin, R.A., and Buzmakov, A.V., The morphogenesis and spatial organization of human pineal gland concretions in Alzheimer’s disease, schizophrenia, and alcoholism, Arkh. Patol., 2006, vol. 68, p. 20.

    CAS  PubMed  Google Scholar 

  10. Gomazkov, O.A., Brain astrocytes and synaptic dissonance: neurodegenerative and mental pathology, Usp. Sovr. Biol., 2020, vol. 140, p. 130. https://doi.org/10.31857/S0042132420010019

    Article  Google Scholar 

  11. Grigorev, I.P., Fedorova, E.A., Sufieva, D.A., and Korzhevskii, D.E., Immunohistochemical studies of cell organization in the human epiphysis, Neurosci. Behav. Physiol., 2021, vol. 51, p. 546. https://doi.org/10.1007/s11055-021-01103-4

    Article  CAS  Google Scholar 

  12. Huang, S.-K., Nobiling, R., Schachner, M., and Taugner, R., Interstitial and parenchymal cells in the pineal gland of the golden hamster, Cell Tissue Res., 1984, vol. 235, p. 327. https://doi.org/10.1007/bf00217857

    Article  CAS  PubMed  Google Scholar 

  13. Ibanez Rodriguez, M.P., Noctor, S.C., and Munoz, E.M., Cellular basis of pineal gland development: emerging role of microglia as phenotype regulator, PLoS One, 2016, vol. 11, p. e0167063. https://doi.org/10.1371/journal.pone.0167063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korzhevskii, D.E., Sukhorukova, E.G., Kirik, O.V., and Grigorev, I.P., Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde, Eur. J. Histochem., 2015, vol. 59, p. 2530.  https://doi.org/10.4081/ejh.2015.253026428887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovacs, G.G., Cellular reactions of the central nervous system, Handb. Clin. Neurol., 2017, vol. 145, p. 13. https://doi.org/10.1016/B978-0-12-802395-2.00003-1

    Article  PubMed  Google Scholar 

  16. Lago-Baldaia, I., Fernandes, V.M., and Ackerman, S.D., More than mortar: glia as architects of nervous system development and disease, Front. Cell Dev. Biol., 2020, vol. 8, p. 611269. https://doi.org/10.3389/fcell.2020.611269

    Article  PubMed  PubMed Central  Google Scholar 

  17. López-Muñoz, F., Calvo, J.L., Boya, J., and Carboneil, A.L., Coexpression of vimentin and glial fibrillary acidic protein in glial cells of the adult rat pineal gland, J. Pineal Res., 1992, vol. 12, p. 145. https://doi.org/10.1111/j.1600-079x.1992.tb00041.x

    Article  PubMed  Google Scholar 

  18. Lowenthal, A., Flament-Durand, J., Karcher, D., Noppe, M., and Brion, J.P., Glial cells identified by anti-α-albumin (anti-GFA) in human pineal gland, J. Neurochem., 1982, vol. 38, p. 863. https://doi.org/10.1111/j.1471-4159.1982.tb08714.x

    Article  CAS  PubMed  Google Scholar 

  19. O’Leary, L.A., Davoli, M.A., Belliveau, C., Tanti, A., Ma, J.C., Farmer, W.T., Turecki, G., Murai, K.K., and Mechawar, N., Characterization of vimentin-immunoreactive astrocytes in the human brain, Front. Neuroanat., 2020, vol. 14, p. 31. https://doi.org/10.3389/fnana.2020.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papasozomenos, S.C., Glial fibrillary acidic (GFA) protein-containing cells in the human pineal gland, J. Neuropathol. Exp. Neurol., 1983, vol. 42, p. 391. https://doi.org/10.1097/00005072-198307000-00003

    Article  CAS  PubMed  Google Scholar 

  21. Pedersen, E.B., Fox, L.M., Castro, A.J., and McNulty, J.A., Immunocytochemical and electron-microscopic characterization of macrophage/microglia cells and expression of class II major histocompatibility complex in the pineal gland of the rat, Cell Tissue Res., 1993, vol. 272, p. 257. https://doi.org/10.1007/bf00302731

    Article  CAS  PubMed  Google Scholar 

  22. Sarnat, H.B. and Yu, W., Ganglion cell maturation in peripheral neuroblastic tumours of children, Clin. Neuropathol., 2022, vol. 41, p. 101. https://doi.org/10.5414/NP301450

    Article  PubMed  Google Scholar 

  23. Sato, T., Kaneko, M., Fujieda, H., Deguchi, T., and Wake, K., Analysis of the heterogeneity within bovine pineal gland by immunohistochemistry and in situ hybridization, Cell Tissue Res., 1994, vol. 277, p. 201. https://doi.org/10.1007/bf00327768

    Article  CAS  PubMed  Google Scholar 

  24. Schachner, M., Huang, S.-K., Ziegelmüller, P., Bizzini, B., and Taugner, R., Glial cells in the pineal gland of mice and rats, Cell Tissue Res., 1984, vol. 237, p. 245. https://doi.org/10.1007/bf00217142

    Article  CAS  PubMed  Google Scholar 

  25. Scharenberg, K. and Liss, L., The histologic structure of the human pineal body. (Structure and function of the epiphysis cerebri), Prog. Brain Res., 1965, vol. 10, p. 193. https://doi.org/10.1016/s0079-6123(08)63452-4

    Article  CAS  PubMed  Google Scholar 

  26. Sofroniew, M.V. and Vinters, H.V., Astrocytes: biology and pathology, Acta Neuropathol., 2010, vol. 119, p. 7. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  27. Stehle, J.H., Saade, A., Rawashdeh, O., Ackermann, K., Jilg, A., Sebesteny, T., and Maronde, E., A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases, J. Pineal Res., 2011, vol. 51, p. 17. https://doi.org/10.1111/j.1600-079X.2011.00856.x

    Article  CAS  PubMed  Google Scholar 

  28. Sukhorukova, E.G., Korzhevskii, D.E., and Alekseeva, O.S., Glial fibrillary acidic protein: The component of intermediate filaments in the vertebrate brain astrocytes, J. Evol. Biochem. Physiol., 2015, vol. 51, p. 1. https://doi.org/10.1134/S0022093015010019

    Article  CAS  Google Scholar 

  29. Verkhratsky, A., Sofroniew, M.V., Messing, A., DeLanerolle, N.C., Rempe, D., Rodríguez, J.J., and Nedergaard, M., Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro, 2011, vol. 4, p. e00082. https://doi.org/10.1042/AN20120010

    Article  Google Scholar 

  30. Zang, X., Nilaver, G., Stein, B.M., Fetell, M.R., and Duffy, P.E., Immunocytochemistry of pineal astrocytes, J. Neuropathol. Exp. Neurol., 1985, vol. 44, p. 486. https://doi.org/10.1097/00005072-198509000-00004

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The presented images were obtained using the equipment of the “Human Microbiome” Center for the Collective Use at the Institute of Experimental Medicine.

Funding

The work was supported by funding from the Russian Science Foundation (project no. 22-25-20051, https://rscf.ru/project/22-25-20051/) and the St. Petersburg Science Foundation in accordance with an agreement dated April 14, 2022, no. 47/2022.

Author information

Authors and Affiliations

Authors

Contributions

D.A. Sufieva: writing the text of the article, photographing and analyzing preparations, preparing illustrations; E.A. Fedorova: performing immunohistochemical reactions, photographing preparations; V.S. Yakovlev: making sections, performing immunohistochemical reactions; D.E. Korzhevskii: editing the manuscript of the article; I.P. Grigorev: design of the experiment, analysis of preparations, writing the text of the article.

Corresponding author

Correspondence to I. P. Grigorev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The work was performed in compliance with ethical standards, which has been confirmed by the positive conclusions of the local ethics committee of the Institute of Experimental Medicine no. 58-9/1-684 of December 11, 2009, and no. 2/22 of April 6, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufieva, D.A., Fedorova, E.A., Yakovlev, V.S. et al. GFAP- and Vimentin-Immunopositive Structures in Human Pineal Gland. Cell Tiss. Biol. 17, 406–413 (2023). https://doi.org/10.1134/S1990519X23040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040120

Keywords:

Navigation