Skip to main content
Log in

Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AG :

abdominal ganglia

AM :

alary muscle

AMN :

alary muscle nerve

CA :

corpus allatum

CC :

corpus cardiacum

dPSO :

distal perisympathetic organ

LHN :

lateral heart nerve

LT :

CCAP-immunoreactive lateral tract

NCA :

nervus corporis allati

NCC :

nervus corporis cardiaci

NM :

neuromer

PMN :

paramedian nerve

PSO :

perisympathetic organ

SOG :

subesophageal ganglion

VDM :

ventral diaphragm muscles

VNC :

ventral nerve cord

References

  • Albrecht FO (1953) The anatomy of the locust. Athlone, London

    Google Scholar 

  • Baudry-Partiaoglou N (1986) Diversity of neurohemal release sites in insects: coexistence of two different (α and β) types of neurohemal structure in the perisympathetic organs. Gen Comp Endocrinol 62:254–268

    Google Scholar 

  • Baudry-Partiaoglou N (1987) Diversity of neurohemal release sites in insects: neurohemal areas associated with peripheral neurosecretory cells in Periplaneta americana L. (Dictyoptera: Blattidae) and Locusta migratoria R & F (Orthoptera: Locustidae). Int J Insect Morphol Embryol 16:296–307

    Google Scholar 

  • Bessé N de, Cazal M (1968) Action des extraits d'organes perisympathiques et de corpora cardiaca sur la diurèse de quelques Insectes. CR Acad Sci [III] 266:615–618

    Google Scholar 

  • Böhme C (1990) Neuroanatomische und immunohistochemische Untersuchungen an den Neuronen des Nervus corporis allati 2 der Heuschrecke Locusta migratoria. Diploma-Thesis München-Garching, FRG

  • Böhme C, Bräunig P (1990) New features of the retrocerebral glandular complex of the locust. In: Elsner N, Roth G (eds) Brain-perception — cognition. Thieme, Stuttgart, p 314

    Google Scholar 

  • Boer HH, Schot LPC, Roubos EW, Maat A ter, Lodder JC, Reichelt D, Swaab DF (1979) ACTH-like immunoreactivity in two electronically coupled giant neurons in the pond snail Lymnea stagnalis. Cell Tissue Res 202:231–240

    Google Scholar 

  • Brady J, Maddrell SHP (1967) Neurohemal organs in the medial nervous system of insects. Z Zellforsch 76:389–404

    Google Scholar 

  • Bräunig P (1990a) The mandibular ganglion—a new peripheral ganglion of the locust. J Exp Biol 148:313–324

    Google Scholar 

  • Bräunig P (1990b) The morphology of subesophageal ganglion cells innervating the nervus corporis cardiaci III of the locust. Cell Tissue Res 260:95–108

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates, vol 3. Freeman, San Francisco, pp 997–1000

    Google Scholar 

  • Burdzik S (1990) Untersuchung der Wirkung myotroper Peptide auf den Enddarm des Flußkrebses Orconectes limosus und den Ovidukt der Heuschrecke Locusta migratoria. Diploma-Thesis Bonn, FRG

  • Burrows M (1975) Co-ordinating interneurons of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurons. J Exp Biol 63:735–753

    Google Scholar 

  • Cassier P, Fain-Maurel MA (1970) Contribution à l'étude infrastructurale du système neurosécréteur rétrocérébral chez Locusta migratoria migratorioides (R. & F.) II. Le transit des neurosécrétions. Z Zellforsch 111:483–492

    Google Scholar 

  • Chalaye D (1966) Recherches sur la destination des produits de neurosécrétion de la chaine nerveuse ventrale du críquet migrateur, Locusta migratoria. CR Acad Sci [III] 262:161–164

    Google Scholar 

  • Chalaye D (1974a) Ultrastructure de la masse ganglionaire métathoracique de Locusta migratoria migratorioides (R. et F.) (Orthoptère). I. Les cellules neurosécrétrices et leurs prolongements dans de neuropile. Acrida 3:19–33

    Google Scholar 

  • Chalaye D (1974b) Ultrastructure de la masse ganglionaire métathoracique de Locusta migratoria migratorioides (R. de F.) (Orthoptère). II. Les organes périsympathiques abdominaux et thoraciques. Acrida 3:35–46

    Google Scholar 

  • Chalaye D (1974c) Neurosécrétions au niveau de la chaine nerveuse ventrale de Locusta migratoria migratorioides R. & F. Etude histologique, histochimique, ultrastructurale et expérimentale. Thèse (CNRS AO 9450), Paris

  • Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res 254:347–360

    Google Scholar 

  • Dircksen H, Webster SG, Keller R (1988) Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting and hyperglycemic hormone in the eyestalk of brachyuran crustaceans. Cell Tissue Res 251:3–12

    Google Scholar 

  • Guthrie DM (1962) Control of the ventral diaphragm in an insect. Nature 196:1010–1012

    Google Scholar 

  • Hoyle G (1953) Potassium ions and insect nerve muscle. J Exp Biol 30:121–135

    Google Scholar 

  • Hustert R (1974) Morphologie und Atmungsbewegungen des 5. Abdominalsegmentes von Locusta migratoria migratorioides. Zool Jb Physiol 78:157–174

    Google Scholar 

  • Johnson B (1966) Fine structure of the lateral cardiac nerves of the cockroach Periplaneta americana (L.). J Insect Physiol 12:645–653

    Google Scholar 

  • Lewis GW, Miller PL, Mills PS (1973) Neuro-musclular mechanisms of abdominal pumping in the locust. J Exp Biol 59:149–168

    Google Scholar 

  • Maynard DM (1961) Thoracic neurosecretory structures in Brachyura. I. Gross anatomy. Biol Bull 121:316–329

    Google Scholar 

  • Miller PL (1960) Respiration in the desert locust. I. The control of ventilation. J Exp Biol 37:224–236

    Google Scholar 

  • Miller PL (1967) The derivation of the motor command to the spiracles of the locust. J Exp Biol 46:349–371

    Google Scholar 

  • Miller TA (1979) Nervous versus neurohormonal control of insect heartbeat. Am Zool 19:77–86

    Google Scholar 

  • Miller TA, S.-Rózsa K (1981) Control of alary muscles of the locust dorsal diaphragm. Physiol Entomol 6:51–59

    Google Scholar 

  • Miller TA, Thomson WW (1968) Ultrastructure of cockroach cardiac innervation. J Insect Physiol 14:1099–1104

    Google Scholar 

  • Miller TA, Benedeczky I, S.-Rózsa K (1979) Ultrastructure of the muscles of the dorsal diaphragm in Locusta migratoria. Cell Tissue Res 203:93–105

    Google Scholar 

  • Myers CM, Evans PD (1985a) The distribution of bovine pancreatic polypeptide/FMRFamide-like immunoreactivity in the ventral nervous system of the locust. J Comp Neurol 234:1–16

    Google Scholar 

  • Myers CM, Evans PD (1985b) An FMRFamide antiserum differentiates between populations of antigens in the ventral nervous system of the locust, Schistocerca gregaria. Cell Tissue Res 242:109–114

    Google Scholar 

  • Myers CM, Evans PD (1988) Peripheral neurosecretory cells on the thoracic median nerves of the locust, Schistocerca gregaria. J Morphol 195:45–58

    Google Scholar 

  • O'Shea M, Adams ME (1981) Pentapeptide (proctolin) associated with an identified neuron. Science 213:567–569

    Google Scholar 

  • Peters M (1977) Innervation of the ventral diaphragm of the locust (Locusta migratoria). J Exp Biol 69:23–32

    Google Scholar 

  • Raabe M (1979) Les neurohormones des Insectes. Publ Lab Zool E N S 14:1–133

    Google Scholar 

  • Raabe M (1985) Réactions immunocytochimiques au niveau de cellules neurosécrétrices périphériques, des aires neurohémales, des organes périsympathiques et des corpora cardiaca chez quelques Insectes. CR Acad Sci [III] 301:407–412

    Google Scholar 

  • Raabe M (1986) Comparative immunocytochemical study of release sites of insulin, glucagon and AKH-like products in Locusta migratoria, Periplaneta americana, and Carausius morosus. Cell Tissue Res 245:267–271

    Google Scholar 

  • Raabe M, Cazal M, Chalaye D, Besse N de (1966) Action cardioaccélératrice des organes neurohémaux périsympathiques ventraux de quelques Insectes. CR Acad Sci [III] 263:2002–2005

    Google Scholar 

  • Robb S, Evans PD (1990) FMRFamide-like peptides in the locust: distribution, partial characterization and bioactivity. J Exp Biol 149:335–360

    Google Scholar 

  • Robb R, Packman LC, Evans PD (1989) Isolation, primary structure and bioactivity of SchistoFLRFamide, a FMRFamide-like neuropeptide from the locust, Schistocerca gregaria. Biochem Biophys Res Comm 160:850–856

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Stangier J (1990) Biological effects of crustacean cardioactive peptide (CCAP), a putative neurohormone/neurotransmitter from crustacean pericardial organs. In: Stefano GB, Florey E (eds) Comparative aspects of neuropeptides. Manchester University Press, Manchester (in press)

    Google Scholar 

  • Stangier J, Hilbich C, Beyreuther K, Keller R (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci USA 84:575–579

    Google Scholar 

  • Stangier J, Hilbich C, Dircksen H, Keller R (1988) Distribution of a novel cardioactive neuropeptide (CCAP) in the nervous system of the shore crab Carcinus maenas. Peptides 9:795–800

    Google Scholar 

  • Stangier J, Hilbich C, Keller R (1989) Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, Locusta migratoria. J Comp Physiol B159:5–11

    Google Scholar 

  • Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Google Scholar 

  • Thomas A, Raabe M (1974) Les organes périsympathiques des Orthoptères. Bull Soc Zool Fr 99:187–206

    Google Scholar 

  • Tublitz NJ, Truman JW (1985a) Insect cardioactive peptides. I. Distribution and molecular characteristics of two cardioacceleratory peptides in the tobacco hawkmoth, Manduca sexta. J Exp Biol 114:365–379

    Google Scholar 

  • Tublitz NJ, Truman JW (1985b) Insect cardioactive peptides. II. Neurohormonal control of heart activity by two cardioacceleratory peptides in the tobacco hawkmoth, Manduca sexta. J Exp Biol 114:381–395

    Google Scholar 

  • Tublitz NJ, Truman JW (1985c) Identification of neurones containing cardioacceleratory peptides (CAPs) in the ventral nerve cord of the tobacco hawkmoth, Manduca sexta. J Exp Biol 114:395–410

    Google Scholar 

  • Tublitz NJ, Truman JW (1985d) Intracellular stimulation of an identified neuron evokes cardioacceleratory peptide release. Science 228:1013–1015

    Google Scholar 

  • Tublitz NJ, Copenhaver PF, Taghert PH, Truman JW (1986) Peptidergic regulation of behaviour: an identified neuron approach. Trends Neurosci 9:358–363

    Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust subesophageal and thoracic ganglia. Philos Trans R Soc Lond [Biol] 297:91–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dircksen, H., Müller, A. & Keller, R. Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res 263, 439–457 (1991). https://doi.org/10.1007/BF00327278

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327278

Key words

Navigation