Skip to main content

Nodose Ganglion

  • Chapter
  • First Online:
Neuroanatomy and Neurophysiology of the Larynx

Abstract

The nerve fibers originating in the nodose ganglion supply the respiratory organs, the gastrointestinal organs, and the heart. They are involved in visceral perception in these organs. The locations of the innervating neurons within the ganglion have been reported for each of the organs. We have elucidated that the sensory nerves distributed in the larynx chiefly travel via the superior laryngeal nerve branch, and their initiator cells are located in the rostrolateral side of the nodose ganglion. In addition, we investigated the distribution and coexistence of cells that contain neuropeptides such as CGRP, gasotransmitters, and catecholamines in the nodose ganglion and proved that several of them are involved in the laryngeal sensory nervous system. We also elucidated that capsaicin receptors and ATP receptors are present in the nodose ganglion, contributing to the transmission of noxious stimuli information in the larynx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508.

    Article  CAS  PubMed  Google Scholar 

  2. Hisa Y, Lyon MJ, Malmgren LT. Central projection of the sensory component of the rat recurrent laryngeal nerve. Neurosci Lett. 1985;55:185–90.

    Article  CAS  PubMed  Google Scholar 

  3. Jones RL. Cell fibre ratios in the vagus nerve. J Comp Neurol. 1937;67:469–82.

    Article  Google Scholar 

  4. Mohiuddin A. Vagal preganglionic fibres to the alimentary canal. J Comp Neurol. 1953;99:289–317.

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman AR. Sensory ganglia. In: Landon DN, editor. The peripheral nerve. New York: Wiley; 1976. p. 188–278.

    Google Scholar 

  6. Lundberg JM, Hökfelt T, Nilsson G, Terenius L, Rehfeld J, Elde R, Said S. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand. 1978;104:499–501.

    Article  CAS  PubMed  Google Scholar 

  7. Lundberg JM, Franco-Cereceda A, Hua X, Hökfelt T, Fischer JA. Co-existence of substance P and calcitonin gene-related peptidelike immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985;108:315–9.

    Article  CAS  PubMed  Google Scholar 

  8. Helke CJ, Hill KM. Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat. Neuroscience. 1988;26:539–51.

    Article  CAS  PubMed  Google Scholar 

  9. Philippe C, Cuber JC, Bosshard A, Rampin O, Laplace JP, Chayvialle JA. Galanin in porcine vagal sensory nerves: immunohistochemical and immunochemical study. Peptides. 1990;11:989–93.

    Article  CAS  PubMed  Google Scholar 

  10. Hisa Y, Tadaki N, Uno T, Okamura H, Taguchi J, Ibata Y. Neuropeptide participation in canine laryngeal sensory innervation. Immunohistochemistry and retrograde labeling. Ann Otol Laryngol. 1994;103:767–70.

    Article  CAS  Google Scholar 

  11. Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, Snyder SH. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab. 1993;13:70–9.

    Article  CAS  PubMed  Google Scholar 

  12. Price J, Mudge AW. A subpopulation of rat dorsal root ganglion neurones is catecholaminergic. Nature. 1983;301:241–3.

    Article  CAS  PubMed  Google Scholar 

  13. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  14. Ichikawa H, Sugimoto T. Co-expression of VRL-1 and calbindin D-28k in the rat sensory ganglia. Brain Res. 2002;924:109–12.

    Article  CAS  PubMed  Google Scholar 

  15. Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R. Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology. 1997;36:1229–42.

    Article  CAS  PubMed  Google Scholar 

  16. Chen CC, England S, Akopian AN, Wood JN. A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A. 1998;18:10240–5.

    Article  Google Scholar 

  17. Portalier P, Vigier D. Localization of aortic cells in the nodose ganglion by HRP retrograde transport in the cat. Neurosci Lett. 1979;11:7–11.

    Article  CAS  PubMed  Google Scholar 

  18. Filippova LV, Bagaev VA, Makarov FH, Rybakov VL. The localization of neurons in the nodose ganglion of the cat that innervate the rostral portion of the duodenum. Morfologiia. 1992;102:25–30.

    CAS  PubMed  Google Scholar 

  19. Mohlant M. Le nerf vague: etude anatomique et expérimentale. II. Innervation motrice du larynx. Le Nevraxe. 1912;13:22–44.

    Google Scholar 

  20. Lucier GE, Egizii R, Dostrovsky JO. Projections of the internal branch of the superior laryngeal nerve of the cat. Brain Res Bull. 1986;16:713–21.

    Article  CAS  PubMed  Google Scholar 

  21. Hisa Y, Toyoda K, Uno T, Murakami Y, Ibata Y. Localization of the sensory neurons in the canine nodose ganglion sending fibers into the internal branch of the superior laryngeal nerve. Eur Arch Otorhinolaryngol. 1991;248:265–7.

    Article  CAS  PubMed  Google Scholar 

  22. Toyoda K. Localization of sensory neurons in the canine nodose ganglion sending fibers to the laryngeal nerves. Nihon Jibiinkoka Gakkai Kaiho. 1991;94:1888–97.

    Article  CAS  PubMed  Google Scholar 

  23. Toyoda K, Hisa Y, Uno T, Tadaki N. Distribution of the afferent neurons from the canine recurrent laryngeal nerve. Eur Arch Otorhinolaryngol. 1993;249:485–7.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki M, Kirchner JA. Afferent nerve fibers in the external branch of the superior laryngeal nerve in the cat. Ann Otol Rhinol Laryngol. 1968;77:1059–70.

    Article  CAS  PubMed  Google Scholar 

  25. Goodman EC, Iversen LL. Calcitonin gene-related peptide; novel neuropeptide. Life Sci. 1986;38:216–2178.

    Article  Google Scholar 

  26. Koike S, Hisa Y, Uno T, Murakami Y, Tamada Y, Ibata Y. Nitric oxide synthase and NADPHdiaphorase in neurons of the rat, dog and guinea pig nodose ganglia. Acta Otolaryngol Suppl. 1998;539:110–2.

    CAS  PubMed  Google Scholar 

  27. Aimi Y, Fujimura M, Vincent SR, Kimura H. Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J Comp Neurol. 1991;306:382–92.

    Article  CAS  PubMed  Google Scholar 

  28. Hisa Y, Uno T, Tadaki N, Umehara K, Okamura H, Ibata Y. NADPH-diaphorase and nitric oxide synthase in the canine superior cervical ganglion. Cell Tissue Res. 1995;279:629–31.

    Article  CAS  PubMed  Google Scholar 

  29. Helke CJ, Niederer AJ. Studies on the coexistence of substance P with other putative transmitters in the nodose and petrosal ganglia. Synapse. 1990;5:144–51.

    Article  CAS  PubMed  Google Scholar 

  30. Uno T, Hisa Y, Tadaki N, Okamura H, Ibata Y. Tyrosine hydroxylase-immunoreactive cells in the nodose ganglion for the canine larynx. Neuroreport. 1996;7:1373–6.

    Article  CAS  PubMed  Google Scholar 

  31. Nishiyama K, Yagita K, Yamaguchi S, Kitamura S, Matsuo T, Uno T, Tanaka M, Hisa Y, Ibata Y, Okamura H. Tyrosine hydroxylase and NADPH-diaphorase in the rat nodose ganglion: colocalization and central projection. Acta Histchem Cytochem. 2001;34:135–41.

    Article  Google Scholar 

  32. Katz DM, Markey KA, Goldstein M, Black IB. Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc Natl Acad Sci U S A. 1983;80:3526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katz DM, Black IB. Expression and regulation of catecholaminergic traits in primary sensory neurons: relationship to target innervation in vivo. J Neurosci. 1986;6:983–9.

    CAS  PubMed  Google Scholar 

  34. Katz DM, Adler JE, Black IB. Catecholaminergic primary sensory neurons: autonomic targets and mechanisms of transmitter regulation. Fed Proc. 1987;46:24–9.

    CAS  PubMed  Google Scholar 

  35. Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M. L-dopa-immunoreactive neurons in the rat hypothalamic tuberal region. Neurosci Lett. 1988;95:42–6.

    Article  CAS  PubMed  Google Scholar 

  36. Okamura H, Kitahama K, Mons N, Matsumoto Y, Ibata Y, Geffard M. Heterogeneous distribution of L-DOPA immunoreactivity in dopaminergic neurons of the rat midbrain. In: Nagatsu T, editor. Basic, clinical, and therapeutic aspects of Alzheimer’s and Parkinson’s diseases, vol. 1. New York: Plenum Press; 1990. p. 423–6.

    Chapter  Google Scholar 

  37. Misu Y, Goshima Y, Ueda H, Okamura H. Neurobiology of L-DOPAergic systems. Prog Neurobiol. 1996;49:415–54.

    Article  CAS  PubMed  Google Scholar 

  38. Uno T, Koike T, Bamba H, Hirota R, Hisa Y. Capsaicin receptor expression in the rat laryngeal innervation. Ann Otol Rhinol Laryngol. 2004;113:356–8.

    Article  PubMed  Google Scholar 

  39. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–43.

    Article  CAS  PubMed  Google Scholar 

  40. Tominaga M. Itami Juyoutai Kenkyu no Shinpo. Nou no kagaku (Brain Sci). 2001;23:829–35.

    CAS  Google Scholar 

  41. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–5.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M, Noguchi K. Differential regulation of P2X3mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain. 2001;91:351–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Hisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hirota, R., Okano, H., Hisa, Y. (2016). Nodose Ganglion. In: Hisa, Y. (eds) Neuroanatomy and Neurophysiology of the Larynx. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55750-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55750-0_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55749-4

  • Online ISBN: 978-4-431-55750-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics