Skip to main content
Log in

Effects of macrophyte growth forms on invertebrate communities in saline lakes of the Wyoming High Plains

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allanson, B. R., 1973. The fine structure of the periphyton ofChara sp. andPotamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R. G. Wetzel and H. L. Allen. Freshwat. Biol. 3: 535–542.

    Article  Google Scholar 

  • Bierhuizen, J. F. H & E. E. Prepas, 1985. Relationships between nutrients, dominant ions, and phytoplankton standing crop in prairie saline lakes. Can J. Fish aquat. Sci 42: 1588–1594.

    Article  CAS  Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Science 341: 316–318.

    CAS  Google Scholar 

  • Chambers, P. A., 1987. Light and nutrients in the control of aquatic plant community structure II.In situ observations. J. Ecol. 75: 621–628.

    Article  Google Scholar 

  • Chilton, E. W., 1990. Macroinvertebrate communities associated with three aquatic macrophytes (Ceratophyllum demersum, Myriophyllum spicatum, andVallisneria americana) in Lake Onalaska, Wisconsin. J. Freshwat. Ecol. 5: 455–466.

    Google Scholar 

  • Clavero, V., J. A. Fernandez & F. X. Niell, 1990. Influence of salinity on the concentration and rate of interchange of dissolved phosphate between water and sediment in Fuente Piedra lagoon (S. Spain). Hydrobiologia 197: 91–97.

    Article  CAS  Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet & E. T. LaRoe, 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildl. Serv., FWS/OBS-79/31, Washington, D.C.

  • Crumpton, W. G., 1989. Algae in northern prairie wetlands. In A. van der Valk (ed.) Northern prairie wetlands. Iowa State University Press, Ames: 188–203.

    Google Scholar 

  • Cyr, H. & J. A. Downing, 1988a. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwat. Biol. 20: 365–374.

    Article  Google Scholar 

  • Cyr, H. & J. A. Downing, 1988b. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can. J. Fish. aquat. Sci. 45: 976–984.

    Article  Google Scholar 

  • Duarte, C. M. & J. Kalff, 1990. Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia 196: 17–23.

    Article  Google Scholar 

  • Dvorak, J. & E. P. H. Best, 1982. Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115–126.

    Article  Google Scholar 

  • Galat, D. L., M. Coleman & R. Robinson, 1988. Experimental effects of elevated salinity on three benthic invertebrates in Pyramid Lake, Nevada. Hydrobiologia 158: 133–144.

    Article  CAS  Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Article  Google Scholar 

  • Gregg, W. W. & F. L. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128: 45–56.

    Article  Google Scholar 

  • Hammer, U. T., 1981. Primary production in saline lakes. Hydrobiologia 81: 47–57.

    Article  Google Scholar 

  • Hammer, U. T. & J. M. Heseltine, 1988. Aquatic macrophytes in saline lakes of the Canadian prairies. Hydrobiologia 158: 101–116.

    Article  CAS  Google Scholar 

  • Hammer, U. T., J. S. Sheard & J. Kranabetter, 1990. Distribution and abundance of littoral benthic fauna in Canadian prairie saline lakes. Hydrobiologia 197: 173–192.

    Article  CAS  Google Scholar 

  • Hanson, J. M., 1990. Macroinvertebrate size-distributions of two contrasting freshwater macrophyte communities. Freshwat. Biol. 24: 481–491.

    Article  Google Scholar 

  • Hargeby, A., 1990. Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57: 338–346.

    Google Scholar 

  • Hillebrand, H., 1983. Development and dynamics of floating clusters of filamentous algae. In R. G. Wetzel (ed.), Periphyton of freshwater systems. Dr W. Junk Publishers, The Hague: 31–39.

    Google Scholar 

  • Kantrud, H. A., J. B. Millar & A. G. van der Valk, 1989. Vegetation of wetlands of the prairie pothole region. In A. G. van der Valk (ed.), Northern prairie wetlands. Iowa State University Press, Ames: 132–187.

    Google Scholar 

  • Kornijow, R., 1992. Seasonal migration by larvae of an epiphytic chironomid. Freshwat. Biol. 27: 85–89.

    Article  Google Scholar 

  • Kornijow, R., R. D. Gulati & E. van Donk, 1990. Hydrophyte-macroinvertebrate interactions in Zwemlust, a lake undergoing biomanipulation. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 467–474.

    Google Scholar 

  • Krecker, F. H., 1939. A comparative study of the animal population of certain submerged aquatic plants. Ecology 20: 553–562.

    Article  Google Scholar 

  • Krull, J. N., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. J. wildl. Mgmt 34: 707–718.

    Google Scholar 

  • Lancaster, J. & G. G. E. Scudder, 1987. Aquatic Coleoptera and Hemiptera in some Canadian saline lakes: patterns in community structure. Can. J. Zool. 65: 1383–1390.

    Article  Google Scholar 

  • Moen, R. A. & Y. Coen, 1989. Growth and competition betweenPotamogeton pectinatus L. andMyriophyllum exalbescens Fern. in experimental ecosystems. Aquat. Bot. 33: 257–270.

    Article  Google Scholar 

  • Murkin, H. R., 1989. The basis for food chains in prairie wetlands. In A. G. van der Valk (ed.), Northern prairie wetlands. Iowa State University Press, Ames: 316–338.

    Google Scholar 

  • Murkin, E. J., H. R. Markin & R. D. Titman, 1992. Nektonic invertebrate abundance and distribution at the emergent vegetation-open water interface in the Delta Marsh, Manitoba, Canada. Wetlands 12: 45–52.

    Article  Google Scholar 

  • Nelson, J. W. & J. A. Kadlec, 1984. A conceptual approach to relating habitat structure and macroinvertebrate production in freshwater wetlands. Trans. N. Am. Wildl. Nat. Resour. Conf. 49: 262–270.

    Google Scholar 

  • Pereyra-Ramos, E., 1981. The ecological role of Characeae in the lake littoral. Ekologia Polska 29: 167–209.

    Google Scholar 

  • Peterka, J. J., 1989. Fishes in northern prairie wetlands. In A. G. van der Valk (ed.), Northern prairie wetlands. Iowa State University Press, Ames: 302–315.

    Google Scholar 

  • Rasmussen, J. B., 1988. Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Can. J. Fish. aquat. Sci. 45: 1436–1447.

    Article  CAS  Google Scholar 

  • Rawson, D. S. & J. E. Moore, 1944. The saline lakes of Saskatchewan. Can. J. Res. 22d: 141–201.

    CAS  Google Scholar 

  • SAS Institute, 1987. SAS/STAT guide for personal computers, version 6 edition. SAS Institute Inc., Cary, North Carolina, USA.

    Google Scholar 

  • Schramm, H. L. & K. J. Jirka, 1989. Effects of aquatic macrophytes on benthic macroinvertebrates in two Florida lakes. J. Freshwat. Ecol. 5: 1–12.

    Google Scholar 

  • Stewart, R. E. & H. A. Kantrud, 1972. Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors. U.S. Geol. Surv. Prof. Pap. 585-D.

  • Swanson, G. A., T. C. Winter, V. A. Adomaitis & J. W. LaBaugh, 1988. Chemical characteristics of prairie lakes in south-central North Dakota — their potential for influencing use by fish and wildlife. U.S. Fish and Wildl. Serv., Fish and Wildl. Tech. Rep. 18.

  • Timms, B. V., 1983. A study of benthic communities in some shallow lakes of western Victoria, Australia. Hydrobiologia 105: 165–177.

    Article  Google Scholar 

  • Timms, B. V., U. T. Hammer & J. W. Sheard, 1986. A study of benthic communities in some saline lakes in Saskatchewan and Alberta, Canada. Int. Revue ges. Hydrobiol. 71: 759–777.

    CAS  Google Scholar 

  • Tones, P. I., 1976. Factors influencing selected littoral fauna in saline lakes in Saskatchewan. Ph.D. Thesis, University of Saskatchewan, Saskatoon, 185 pp.

    Google Scholar 

  • Vareschi, E., 1987. Saline lake ecosystems. In E. D. Schulze & H. Zwolfer (eds), Potentials and limitations of ecosystem analysis. Springer-Verlag, New York: 347–364.

    Google Scholar 

  • Wetzel, R. G., 1964. A comparative study of primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Revue ges. Hydrobiol. 49: 1–64.

    Google Scholar 

  • Wilcox, D. A. & J. E. Meeker, 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203.

    Google Scholar 

  • Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    Article  CAS  Google Scholar 

  • Wollheim, W. M. & J. R. Lovvorn, 1995. Salinity effects on macroinvertebrate assemblages and waterbird food webs in shallow lakes of the Wyoming High Plains. Hydrobiologia 310: 207–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollheim, W.M., Lovvorn, J.R. Effects of macrophyte growth forms on invertebrate communities in saline lakes of the Wyoming High Plains. Hydrobiologia 323, 83–96 (1996). https://doi.org/10.1007/BF00017586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017586

Key words

Navigation