Skip to main content
Log in

Biomass density and the relationship between submerged macrophyte biomass and plant growth form

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The utility of biomass density (biomass per unit volume) as a quantitative descriptor of the growth form of submerged macrophytes is evaluated and confirmed. Biomass density (BD) is a species specific characteristic which does not appear to be influenced by plant development. Secondly, BD reflects the growth form of the dominant species in the stand, because stands of species with a similar growth form also have similar BD's. Lastly, the BD of submerged macrophyte stands is closely related to the flowering pattern of the dominant species, and has important implications for light capture and light competition with neighbouring plants. Thus, BD should be a useful tool in the quantitative analysis of submerged macrophyte community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, J. D., 1986. Mechanistic implications for pollination in the marine angiosperm Zostera marina. Aquat. Bot. 24: 343–353.

    Google Scholar 

  • Anderson, M. G., 1978. Distribution and production of sago pondweed (Potamogeton pectinatus L.) on a Northern prairie marsh. Ecology 59: 154–160.

    Google Scholar 

  • Andrews, M., I. R. Davidson, M. E. Andrews & J. A. Raven, 1984. Growth of Chara hispida. 1. Apical growth and basal decay. J. Ecol. 72: 873–88.

    Google Scholar 

  • Chambers, P. A. & J. Kalff, 1987. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J. Ecol. 75: 611–619.

    Google Scholar 

  • Cook, C. D. K. & K. Urmi-König, 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquat. Bot. 21: 111–156.

    Google Scholar 

  • Cox, P. A., 1983. Search theory, random motion, and the convergent evolution of pollen and spore morphology in aquatic plants. Am. Nat. 121: 9–31.

    Google Scholar 

  • Downing, J. A. & M. R. Anderson, 1985. Estimating the standing biomass of aquatic macrophytes. Can. J. Fish. aquat. Sci. 42: 1860–1869.

    Google Scholar 

  • Duarte, C. M. & J. Kalff, 1987. Weight-density relationships of submerged macrophytes: the importance of light and growth form. Oecologia (Berlin) 72: 612–617.

    Google Scholar 

  • Engel, S., 1985. Aquatic plant community interactions of submerged macrophytes. Tech. Bull. 156. Wisconsin Department Natural Resources. Madison. 79 pp.

    Google Scholar 

  • Fassett, N. C., 1966. A Manual of Aquatic Plants. University of Wisconsin Press, Madison, 405 pp.

    Google Scholar 

  • Geiger, N. S., 1983. Winter drawdown for the control of eurasian water milfoil in an Oregon oxbow lake (Blue Lake, Mitnomah County) P 193–197. In J. Taggart (ed.), Lake Restoration, Protection and Management, EPA, Washington, 327 p.

    Google Scholar 

  • Getsinger, K. D. & C. R. Dillon, 1984. Quiescence, growth and senescence of Egeria densa in Lake Marion. Aquat. Bot. 20: 329–338.

    Google Scholar 

  • Grace, J. B. & L. J. Tilly, 1976. Distribution and abundance of submerged macrophytes, including Myriophyllum spicatum L. (Angiospermae), in a reactor cooling reservoir. Arch. Hydrobiol. 77: 475–487.

    Google Scholar 

  • Goldyn, H., 1984. Biomass of macrophytes in the channel running through agricultural areas. Ekol. pol. 32: 167–176.

    Google Scholar 

  • Harlan, S. M., G. C. Davis & G. J. Pesacreta, 1985. Hydrilla in three North Carolina lakes. J. Aquat. Plant Manage. 23: 68–71.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise in Limnology. Vol. III. Limnological Botany. J. Wiley, New York, 660 pp.

    Google Scholar 

  • Ikusima, I., 1966. Ecological studies on the productivity of aquatic plant communities II. Seasonal changes in standing crop and productivity of a natural submerged community of Vallisneria denseserrulata. Bot. Mag., Tokyo 79: 7–19.

    Google Scholar 

  • Jupp, B. P. & D. H. N. Spence, 1977. Limitation of macrophytes in a eutrophic lake, Loch Leven. II Wave action, sediments and waterfowl grazing. J. Ecol. 65: 431–446.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in the aquatic environment. Cambridge Univ. Press. New York, 401 pp.

    Google Scholar 

  • Kunii, H., 1984. Seasonal growth and profile structure development of Elodea nuttallii (Planch.) St. John in pond Ojaga-Ike, Japan. Aquat. Bot. 18: 239–247.

    Google Scholar 

  • Lind, C. T. & G. Cottam, 1969. The submerged aquatics of University Bay: A study in eutrophication. Amer. Midl. Nat. 81: 353–369.

    Google Scholar 

  • Lonsdale, W. M. & A. R. Watkinson, 1983. Plant geometry and self thinning. J. Ecol. 71: 285–297.

    Google Scholar 

  • Luther, H., 1983. On life form and on above ground and underground biomass of aquatic macrophytes. Acta Bot. Fennica 123: 1–23.

    Google Scholar 

  • Moeller, R. E., 1985. Macrophytes. p. 177–192. In G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Mirror lake and its environment. Springer-Verlag, New York, 516 pp.

    Google Scholar 

  • Ozimek, T., 1978. Effect of municipal sewage on the submerged macrophytes of a lake littoral. Ekol. Pol. 26: 3–39.

    Google Scholar 

  • Owens, M., M. A. Learner & P. J. Maris, 1967. Determination of the biomass of aquatic plants using an optical method. J. Ecol. 54: 671–676.

    Google Scholar 

  • Pereira-Ramos, E., 1982. The ecological role of Characeae in the lake littoral. Ekol. Pol. 29: 167–209.

    Google Scholar 

  • Pokorný, J., Květ, J. P. Ondok, Z. Toul & I. Ostrý, 1984. Production-ecological analysis of a plant community dominated by Elodea canadensis. Michx. Aquat. Bot. 19: 263–292.

    Google Scholar 

  • Rasmussen, J. B., 1988. Littoral zoobenthic biomass in lake, and its relationship to physical, chemical, and trophic factors. Can. J. Fish. aquat. Sci. 45: 1436–1447.

    Google Scholar 

  • Rørslett, B., 1985. Death of submerged macrophytes — actual field observations and some implications. Aquat. Bot. 22: 7–19.

    Google Scholar 

  • Rørslett, B., 1987. A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29: 63–81.

    Google Scholar 

  • Rørslett, B., D. Bergel & S. W. Hohansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London, 610 pp.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1969. Biometry: the principles and practice of statistics in biological research. W. H. Freeman, San Francisco, 776 p.

    Google Scholar 

  • Verhoeven, J. T. A., 1980. The ecology of Ruppia-dominated communities in western Europe. III. Aspects of production, consumption and decomposition. Aquat. Bot. 8: 209–253.

    Google Scholar 

  • White, J., 1981. The allometric interpretation of the self-thinning rule. J. theor. Biol. 89: 475–500.

    Google Scholar 

  • White, J., 1985. The thinning rule and its application to mixtures of plant populations. P 291–309. In J. White (ed.), Studies on plant demography. Academic Press, London, 393 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

#244 contribution to the Lake Memphremagog Project, McGill Limnology Center.

#244 contribution to the Lake Memphremagog Project, McGill Limnology Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, C.M., Kalff, J. Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia 196, 17–23 (1990). https://doi.org/10.1007/BF00008889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008889

Key words

Navigation