Skip to main content
Log in

Influence of salinity on the concentration and rate of interchange of dissolved phosphate between water and sediment in Fuente Piedra lagoon (S. Spain)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Short (60 minutes) and long term (3 hours) experiments were performed to measure the final equilibrium phosphate concentration in water and the net fluxes of phosphate interchange between water and sediment at different salinities. The rate of phosphate release from the sediment increases with the salinity increment, as well as the final equilibrium phosphate concentration. In both short and long term experiments, the net rate of dissolved phosphate removal follows a saturation kinetics except for long term experiments at 70 g l−1 salinity. In this case, the relationship between net removal and dissolved phosphate concentration is linear. The experiments show that salinity stimulates phosphate release from sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. & G. Gahnstrom, 1985. Effects of pH on release and sorption of dissolved substances in sedimentwater microcosms. Ecol. Bull. 37: 301–318.

    Google Scholar 

  • Atkinson, M. J., 1987. Low phosphorus sediments in a Hypersaline Marine Bay. Estuar. coast. Shelf. Sci. 24: 335–347.

    Google Scholar 

  • Bostrom, B., M. Janson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. 18: 5–59.

    Google Scholar 

  • Bostrom, B. & K. Petersson, 1982. Different patterns of phosphorus release from lake sediment in laboratory experiments. Hydrobiol. 92: 415–129.

    Google Scholar 

  • Callender, E. & D. E. Hammond, 1982. Nutrient exchange across the sediment-water interface in the Potomac River estuary. Estuar. coast. Shelf. Sci. 15: 395–414.

    Google Scholar 

  • Fernández, J. A., F. X. Niell & Lucena, 1985. A rapid and sensitive automated determination of phosphate in natural waters. Limnol. Oceanogr. 30 (1): 227–230.

    Google Scholar 

  • Gallepp, G. W., 1979. Chironomid influence and phosphorus release in sediment-water microcosms. Ecol. 60: 547–556.

    Google Scholar 

  • Herberg, O., 1986. Valoración del impacto provocado por el Arroyo Santillán en la Laguna de Fuenta Piedra (Málaga). Tesis de Licenciatura. Universidad de Málaga, 122 pp.

  • Hesslein, R. H., 1980. In situ measurements of pore water diffusion coefficients using tritiated water. Can. J. Fish. aquat. Sci. 41: 1609–1617.

    Google Scholar 

  • Holdrem, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intac lake sediments cores. Envir. Sci. Technol. 14: 79–87.

    Google Scholar 

  • Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factor affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.

    Google Scholar 

  • Kelderman, P., 1984. Sediment-water interchange in Lake Grevelingen under different environmental conditions. Neth. J. Sea. Res. 18 (3/4): 286–311.

    Google Scholar 

  • Krom, M. D. & R. A. Berner, 1980. Adsorption of phosphate in anoxic marine sediment. Limnol. Oceanogr. 25 (5): 797–806.

    Google Scholar 

  • Lucena, J., F. X. Niell & O. Herberg (in press). Transformación del input orgánico en la laguna atalasohalina de Fuente Piedra. Limnética.

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. Ecol. 29: 280–329.

    Google Scholar 

  • Nixon, S. W., J. R. Kelly, B. N. Furnas & C. A. Oviatt, 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In K. R. Tenore & B. C. Coull (eds.). Marine Benthic dynamics. Univ. South Carolina Press, Columbia, 219–242.

    Google Scholar 

  • Nurnberg, G. K., 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnion. Oceanogr. 29: 111–124.

    Google Scholar 

  • Quigley, M. A. & J. Robbins, 1986. Phosphorus release processes in nearshore southern Lake Michigan. Can. J. Fish. Aquat. Sci. 43: 1201–1207.

    Google Scholar 

  • Raven, J. A., 1984. Energetics and transport in Aquatic Plants. Alan R. Liss, N.Y., 587 pp + IX.

    Google Scholar 

  • Tominaga H., N. Tominaga & N. D. Williams, 1987. Concentration of some Inorganic Plant Nutrients in Saline Lakes on the Yorke Peninsula, South Australia. Aust. J. Mar. Freshw. Res. 38: 301–305.

    Google Scholar 

  • Twinch, A. J. & R. H. Peter, 1984. Phosphate exchange between littoral sediments and overlying water in a oligotrophic North- Temperate Lake. Can. J. Fish. aquat. Sci. 41: 1609–1617.

    Google Scholar 

  • Vargas, J. M., M. Blasco & A. Antunez, 1983. Los vertebrados de la Laguna de Fuente de Piedra. I.C.O.N.A. Monografias, 28. 228 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavero, V., Fernández, J.A. & Niell, F.X. Influence of salinity on the concentration and rate of interchange of dissolved phosphate between water and sediment in Fuente Piedra lagoon (S. Spain). Hydrobiologia 197, 91–97 (1990). https://doi.org/10.1007/BF00026941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026941

Key words

Navigation