Skip to main content
Log in

Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.)

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DNA microsatellites are ubiquitously present in eukaryotic genomes [30] and represent a vast source of highly informative markers [30, 33, 34, 2]. We describe in this article a (GGC)n microsatellite which is widely distributed in eukaryotic genomes. Using polymerase chain reaction (PCR) techniques and DNA sequencing, we demonstrated for the first time in plant species that a (GGC)n microsatellite locus is moderately polymorphic. Six alleles are present at this locus in rice and length polymorphisms are caused by variation in the number of tandem GGC repeats. By scoring a backcross mapping population, we were able to demonstrate that this locus is stably inherited and does not link to any known RFLP markers on the rice RFLP map. Our results suggest that DNA microsatellites should be useful in plants for construction of genetic linkage maps, extension of the existing genetic linkage maps, linkage analysis of disease and pest resistance genes, and the study of population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali S, Epplen JT: DNA fingerprinting of eukaryotic genomes by synthetic oligodeoxyribonucleotide probes. Indian J Biochem & Biophys 28: 1–9 (1991).

    Google Scholar 

  2. Beckmann JS, Soller M: Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Biotechnology 8: 930–932 (1990).

    Article  PubMed  Google Scholar 

  3. Causse MA, Ahn S, Fulton TM, Kennedy A, Second G, Wu KS, Tanksley SF: RFLP mapping of the rice genome: development of high density RFLP map using an interspecific cross. Theor Appl Genet (1992) (in press).

  4. Condit R, Hubbell SP: Abundance and DNA Sequence of 2-Base Repeat Regions in Tropical Tree Genomes. Genome 34: 66–71 (1991).

    PubMed  Google Scholar 

  5. Cornall RJ, Airman TJ, Hearne CM, Todd JA: The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10: 874–881 (1991).

    PubMed  Google Scholar 

  6. Edwards A, Civitello A, Hammond HA, Caskey CT: DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49: 746–756 (1991).

    PubMed  Google Scholar 

  7. Edwards A, Hammon HA, Jin L, Caskey T, Chakraborty R: Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241–253 (1992).

    PubMed  Google Scholar 

  8. Epplen JT: On simple repeated GA(T/C)A sequences in animal genomes. A critical reappraisal. Journal of Heredity 79: 409–417 (1988).

    PubMed  Google Scholar 

  9. Feener CA, Boyce FM, Kunkel LM: Rapid detection of CA polymorphisms in cloned DNA: application to the 5′ region of the dystrophin gene. Am J Hum Genet 48: 621–627 (1991).

    PubMed  Google Scholar 

  10. Fornage M, Chan L, Siest G, Boerwinkle E: Allele frequency distribution of the (TG)n(AG)m microsatellite in the apolipoprotein C-II gene. Genomics 12: 63–68 (1992).

    PubMed  Google Scholar 

  11. Gale MD, Chao SM, Sharp PJ: RFLP mapping in wheat-progress and problems, pp. 353–363. In: Gene Manipulation in Plant Improvement II (1990).

  12. Glaszmann JC: Isozymes and classification of Asian rice varieties. Theor Appl Genet 74: 21–30 (1987).

    Article  Google Scholar 

  13. Gyllensten UB, Erich HA: Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85: 7652–7656 (1988).

    PubMed  Google Scholar 

  14. Kochert G, Halward T, Brarch WD, Simpson CE: Peanut (Arachis hypogaea L) cultivars and wild species. Theor Appl Genet 81: 565–570 (1991).

    Article  Google Scholar 

  15. Kwiatkowski DJ, Henske EP, Weimer K, Ozelius L, Gusella JF, Haines J: Construction of a GT polymorphism map of human 9q. Genomics 12: 229–240 (1992).

    PubMed  Google Scholar 

  16. Litt M, Luty JA: A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet 44: 391–401 (1989).

    Google Scholar 

  17. Love JM, Knight AM, Mcaleer MA, Todd JA: Towards construction of a high resolution map of the mouse genome using PCR-analyzed microsatellites. Nucl Acids Res 18: 4123–4130 (1990).

    PubMed  Google Scholar 

  18. Maniatis T, Fritsch EF, Sambrook J: Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York (1982).

    Google Scholar 

  19. Martinez-Soriano JP, Wong WM, VanRyk DI, Nazar RN: A widely distributed ‘CAT’ family of repetitive DNA sequences. J Mol Biol 217: 629–635 (1991).

    PubMed  Google Scholar 

  20. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD: Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815–829 (1988).

    Article  Google Scholar 

  21. Nayar NM: Origin and cytogenetics of rice. Adv Genet 17: 153–292 (1973).

    Google Scholar 

  22. Olson M, Hood L, Cantor C, Botstein D: A common language for physical mapping of the human genome. Science 245: 1434–1435 (1989).

    PubMed  Google Scholar 

  23. Oudet C, Mandel JL: An informative polymorphism detectable by polymerase chain reaction at the 3′ end of the dystrophin gene. Hum Genet 84: 283–285 (1990).

    Article  PubMed  Google Scholar 

  24. Petersen MB, Schinzel AA, Binkert F, Tranebjaerg L, Mikkelsen M, Collins FA, Economous EP, Antonarakis SE: Use of short sequence repeat DNA polymorphisms after PCR amplification to detect the parental origin of the additional chromosome 21 in Down Syndrome. Am J Hum Genet 48: 65–71 (1991).

    PubMed  Google Scholar 

  25. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018 (1984).

    PubMed  Google Scholar 

  26. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  27. Shure M, Wessler S, Federoff N: Molecular identification of the Waxy locus in maize. Cell 35: 225–233 (1983).

    Article  PubMed  Google Scholar 

  28. Simpson PR: Variation among the dispersed (GATA)n sequences in Drosophila melanogaster. Genome 33: 750–754 (1990).

    PubMed  Google Scholar 

  29. Smeets HJM, Brunner HG, Ropers H-H, Wieringa B: Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum Genet 83: 245–251 (1989).

    Article  PubMed  Google Scholar 

  30. Tautz D: Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17: 6463–6471 (1989).

    PubMed  Google Scholar 

  31. Tautz D, Renz M: Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucl Acids Res 12: 4127–4138 (1984).

    PubMed  Google Scholar 

  32. Tautz D, Trick M, Dover GA: Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652–656 (1986).

    PubMed  Google Scholar 

  33. Weber JL, May PE: Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Amer J Hum Genet 44: 388–396 (1989).

    PubMed  Google Scholar 

  34. Weber JL: Informativeness of human (dC-dA)n (dG-dT)n polymorphisms. Genomics 7: 524–530 (1990).

    PubMed  Google Scholar 

  35. Winterø AK, Fredholm M, Thomsen PD: Variable (dC-dA)n (dG-dT)n sequences in the porcine genome. Genomics 12: 281–288 (1992).

    PubMed  Google Scholar 

  36. Zhao X, Kochert G: Characterization and genetic mapping of a short, highly repeated interspersed DNA sequence from rice (Oryza sativa L.). Mol Gen Genet 231: 353–359 (1992).

    Article  PubMed  Google Scholar 

  37. Zischler H, Hinkkanen A, Studer R: Oligonucleotide fingerprinting with (CAC)5: Nonradioactive in-gel hybridization and isolation of individual hypervariable loci. Electrophoresis 12: 141–146 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Kochert, G. Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol Biol 21, 607–614 (1993). https://doi.org/10.1007/BF00014544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014544

Key words

Navigation