Skip to main content

Molecular Marker Resources and Their Application

  • Chapter
  • First Online:
The Mungbean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Molecular markers are DNA fragments or sequence tags that are associated with a certain location of the genome of an organism. Markers have been used in mungbean to analyze the genetic diversity among germplasm accessions and cultivars and to map important traits, including resistance to pests and diseases. Early studies were performed with isoenzyme and RAPD markers. Microsatellite markers derived from various Vigna species were efficiently used for generating genetic maps and map traits such as bruchid resistance in segregating populations. The advent of the mungbean whole genome sequence has strongly improved the access to molecular markers for this crop. Large numbers of single-nucleotide markers have been produced by genotyping by sequencing and whole genome re-sequencing, and the generated information has been used to assess the diversity and population structure of mungbean collections and for mapping traits in segregating populations and germplasm panels. Markers for agro-morphological traits as well as for disease and pest resistance are available for marker-assisted selection in mungbean breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MZ, Khan M, Rahaman AK, Ahmed M, Ahsan AF (2010) Study on seed quality and performance of some mungbean varieties in Bangladesh. Int J Exp Agric 2:10–15

    Google Scholar 

  • Barata C, Carena MJ (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339–349

    Article  CAS  Google Scholar 

  • Bhagyawant SS (2016) RAPD-SCAR markers: an interface tool for authentication of traits. J Biosci Med 4:1–9

    CAS  Google Scholar 

  • Bhat KV, Lakhanpaul S, Chadha S (2005) Amplified fragment length polymorphism (AFLP) analysis of genetic diversity in Indian mungbean [Vigna radiata (L.) Wilczek] cultivars. Indian J Biotechnol. http://nopr.niscair.res.in/handle/123456789/5634

  • Bisht IS, Mahajan RK, Patel DP (1998) The use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Resour Crop Evol 45:127–133

    Article  Google Scholar 

  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breria CM, Hsieh CH, Yen J-Y, Nair R, Lin C-Y, Huang S-M, Noble TJ, Schafleitner R (2019) Population structure of the world vegetable center mungbean mini core collection and genome-wide association mapping of loci associated with variation of seed coat luster. Trop Plant Biol

    Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Chaitieng B, Kaga A, Han OK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525

    Article  CAS  Google Scholar 

  • Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264

    Article  Google Scholar 

  • Chattopadhyay K, Ali MN, Sarkar HK, Mandai N, Bhattacharyya S (2005) Diversity analysis by RAPD and ISSR markers among the selected mungbean [Vigna radiata (L.) Wilczek] genotypes. Indian J Gent Plant Breed 65:173–175

    CAS  Google Scholar 

  • Chen HM, Liu CA, Kuo CG, Chien CM, Sun HC, Huang CC, Lin YC, Ku HM (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157:113–122

    Article  CAS  Google Scholar 

  • Chen HM, Ku HM, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216

    Article  Google Scholar 

  • Chen H, Qiao L, Wang L, Wang S, Blair MW, Cheng X (2015a) Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene 566(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang L, Wang S, Liu C, Blair MW, Cheng X (2015a). Transcriptome sequencing of mung bean (Vigna radiata L.) genes and the identification of EST-SSR markers. PLoS One 10(4):e0120273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng X, Wang S, Wu S, Zhou J, Wang S, Yang Y (2005) Tagging and utilization of bruchid resistance gene using PCR markers in mungbean. Zhongguo nongye kexue 38:1534–1539

    CAS  Google Scholar 

  • Chotechung S, Somta P, Chankaew S, Srinives P, Somta P (2011) Identification of DNA markers associated with bruchid resistance in mungbean. Khon Khan Agri J 39:221–226

    Google Scholar 

  • Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P (2016) A gene encoding a polygalacturonase–inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet 129:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Crawford DJ (1990) Plant molecular systematics: macromolecular approaches. Wiley, New York, USA

    Google Scholar 

  • Da Maia LC, Palmieri DA, De Souza VQ, Kopp MM, de Carvalho FI, Costa de Oliveira A (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics s.2008:412696

    Google Scholar 

  • Datta S, Gangwar S, Kumar S, Gupta S, Rai R, Kaashyap M, Singh P, Chaturvedi SK, Singh BB, Nadarajan N (2012) Genetic diversity in selected Indian mungbean [Vigna radiata (L.) Wilczek] cultivars using RAPD markers. Am J Plant Sci 8:1085–1091

    Article  Google Scholar 

  • de Vicente MC, Guzman FA, Engels J, Rao VA (2006) Genetic characterization and its use in decision-making for the conservation of crop germplasm. The role of biotechnology in exploring and protecting agricultural genetic resources, pp 2129–138

    Google Scholar 

  • Dhole VJ, Reddy KS (2013) Development of a SCAR marker linked with a MYMV resistance gene in mungbean (Vigna radiata L. Wilczek). Plant Breed 132:127–132

    Article  CAS  Google Scholar 

  • Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  • Edwards KJ, Barker JH, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    Article  CAS  PubMed  Google Scholar 

  • Elbasyoni IS, Lorenz AJ, Guttieri M, Frels K, Baenziger PS, Poland J, Akhunov E (2018) A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci 270:123–130

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L (2003) Highly parallel SNP genotyping. In: Cold spring harbor symposia on quantitative biology, vol 68. Cold Spring Harbor Laboratory Press, pp 69–78

    Google Scholar 

  • Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Human Mol Genet 15(suppl_1):R57–R66

    Article  CAS  PubMed  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39(5):1295–1301

    Article  Google Scholar 

  • Frisch M, Melchinger A (2005) Selection theory for marker-assisted backcrossing. Genetics 170(2):909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii K, Ishimoto M, Kitamura K (1989) Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool 25:126–132

    Article  Google Scholar 

  • Gonçalves LS, Rodrigues R, Amaral Júnior AD, Karasawa M, Sudré CP (2008) Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genet Mol Res 7:1289–1297

    Article  PubMed  Google Scholar 

  • Gupta SK, Bansal R, Gopalakrishna T (2014) Development and characterization of genic SSR markers for mungbean (Vigna radiata (L.) Wilczek). Euphytica 195(2):245–258

    Article  CAS  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Gwag JG, Dixit A, Park YJ, Ma KH, Kwon SJ, Cho GT, Lee GA, Lee SY, Kang HK, Lee SH (2010) Assessment of genetic diversity and population structure in mungbean. Genes Genomics 32:299–308

    Article  Google Scholar 

  • Hamada H, Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298(5872):396–398

    Article  CAS  PubMed  Google Scholar 

  • Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol Syst 37:123–157

    Article  Google Scholar 

  • Hanson P, Lu SF, Wang JF, Chen W, Kenyon L, Tan CW, Tee KL, Wang YY, Hsu YC, Schafleitner R, Ledesma D (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Hort 201:346–354

    Article  CAS  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–2

    Article  CAS  Google Scholar 

  • Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158(3):1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry ME, Lambrides CJ, Chapman SC, Aitken EA, Imrie BC, Lawn RJ, McIntyre CL, Liu CJ (2005) Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breed 124(3):292–298

    Article  CAS  Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7:e41304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam AS, Blair MW (2018) Molecular characterization of mungbean germplasm from the USDA core collection using newly developed KASP-based SNP markers. Crop Sci 58(4):1659–1670

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P (2017) Novel alleles of two tightly linked genes encoding polygalacturonase–inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front Plant Sci 8:1692

    Google Scholar 

  • Kajonphol T, Sangsiri C, Somta P, Toojinda T, Srinives P (2017) SSR map construction and quantitative trait loci (QTL) identification of major agronomic traits in mungbean (Vigna radiata (L.) Wilczek). SABRAO J Breed Genet 44(1):71–86

    Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 11:6443

    Google Scholar 

  • Karthikeyan A, Sudha M, Senthil N, Pandiyan M, Raveendran M, Nagrajan P (2012) Screening and identification of random amplified polymorphic DNA (RAPD) markers linked to mungbean yellow mosaic virus (MYMV) resistance in mungbean (Vigna radiata (L.) Wilczek). Arch Phytopath Plant Prot 45:712–716

    Article  CAS  Google Scholar 

  • Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13(3):155–161

    Article  Google Scholar 

  • Kole C, Panigrahi J (2001) Vigna glabrescens is a natural allopolyploid of V. radiata and V. umbellata: evidences from seed protein electrophoresis. Crop Res 22:121–128

    Google Scholar 

  • Kumar SV, Tan SG, Quah SC, Yusoff K (2002) Isolation of microsatellite markers in mungbean, Vigna radiata. Mol Ecol Notes 2:96–98

    Article  CAS  Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2003) How wide is the genetic base of pulse crops? In: National symposium on crop diversification and natural resources management, Kanpur, 20–22 Dec 2003

    Google Scholar 

  • Lakhanpaul S, Chadha S, Bhat KV (2000) Random amplified polymorphic DNA (RAPD) analysis in Indian mung bean (Vigna radiata (L.) Wilczek) cultivars. Genetica 109(3):227–34

    Article  CAS  PubMed  Google Scholar 

  • Lestari P, Kim SK, Kang YJ, Dewi N, Lee SH (2014) Genetic diversity of mungbean (Vigna radiata L.) germplasm in Indonesia. Plant Genet Res 12(S1):S91–S94

    Article  Google Scholar 

  • Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single- nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50(7):1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu BH (2017) Statistical genomics: linkage, mapping, and QTL analysis. CRC press

    Google Scholar 

  • Liu HJ, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant J 97(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Liu MS, Kuo TC, Ko CY, Wu DC, Li KY, Lin WJ, Lin CP, Wang YW, Schafleitner R, Lo HF, Chen CY (2016) Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol 16:46

    Google Scholar 

  • Mahmoud SH, Gatehouse JA, Boulter D (1984) Inheritance and mapping of isoenzymes in pea (Pisum sativum L.). Theor Appl Genet 68(6):559–66

    Article  CAS  PubMed  Google Scholar 

  • Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810

    Article  CAS  PubMed  Google Scholar 

  • Mendel G, Corcos AF, Monaghan FV (1993) Gregor Mendel’s experiments on plant hybrids: a guided study. Rutgers University Press

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156

    Article  CAS  PubMed  Google Scholar 

  • Moe KT, Chung JW, Cho YI, Moon JK, Ku JH, Jung JK, Lee J, Park YJ (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Int Plant Biol 53:63–73

    Article  CAS  Google Scholar 

  • Mohanty JB, Naik BS, Panigrahi J, Kole, C (2011) Identification of mungbean cultivars based on electrophoretic patterns of seed proteins. Crop Res 21(2):134–138

    Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2019) Adapting legume crops to climate change using genomic approaches. Plant, Cell Environ 42(1):6–19

    Article  CAS  Google Scholar 

  • Ng WL, Tan SG (2015) Inter-simple sequence repeat (ISSR) markers: are we doing it right. ASM Sci J 9(1):30–39

    Google Scholar 

  • Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG (2018) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85(8):985–993

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik J, Kole C (2002) Detection of a protein marker for screening of MYMV resistance mungbean genotype. Indian J Genet Plant Breed 62:77–78

    Google Scholar 

  • Reflinur R, Lestari P, Lee SH (2017) The potential use of SSR markers to support the morphological identification of Indonesian mungbean varieties. Indonesian J Agric Sci 17(2):65–74

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42(2):557–565

    Article  Google Scholar 

  • Sangiri C, Kaga A, Tomooka N, Vaughan D, Srinives P (2008) Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Aust J Bot 55:837–847

    Article  Google Scholar 

  • Santalla M, Power JB, Davey MR (1998) Genetic diversity in mung bean germplasm revealed by RAPD markers. Plant Breed 117:473–478

    Article  Google Scholar 

  • Sarkar S, Ghosh S, Chatterjee M, Das P, Lahari T, Maji A, Mondal N, Pradhan KK, Bhattacharyya S (2011) Molecular markers linked with bruchid resistance in Vigna radiata var. sublobata and their validation. J Plant Biochem Biotech 20(2):155–160

    Article  Google Scholar 

  • Schafleitner R, Nair RM, Rathore A, Wang YW, Lin CY, Chu SH, Lin PY, Chang JC, Ebert AW (2015) The AVRDC–The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genom 16(1):344

    Article  Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR, Krishnan B, Liu MS, Lo HF, Chen CY, Long-fang OC (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16(1):159

    Google Scholar 

  • Schierwater B, Ender A (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 21:4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvi R, Muthiah AR, Manivannan N, Raveendran TS, Manickam A, Samiyappan R (2006) Tagging of RAPD marker for MYMV resistance in mungbean (Vigna radiata (L.) Wilczek). Asian J Plant Sci 5(2):277–280

    Article  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–4

    Article  CAS  Google Scholar 

  • Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78(3):342–348

    Article  CAS  PubMed  Google Scholar 

  • Singh R, van Heusden AW, Yadav RC (2013) A comparative genetic diversity analysis in mungbean (Vigna radiata L.) using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP). Afr J Biotechnol 12:6574–6582

    Article  CAS  Google Scholar 

  • Solanki RK, Singh S, Kumar J (2010) Molecular marker assisted testing of hybridity of F1 plants in lentil. Food Leg 23:21–24

    Google Scholar 

  • Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62(1):87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10(6):1939

    Article  CAS  Google Scholar 

  • Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI technical Bulletin No. 10. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL (2011) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734

    Article  CAS  Google Scholar 

  • Srinives P, Kitsanachandee R, Chalee T, Sommanas W, Chanprame S (2010) Inheritance of resistance to iron deficiency and identification of AFLP markers associated with the resistance in mungbean (Vigna radiata (L.) Wilczek). Plant Soil 335:423–437

    Article  CAS  Google Scholar 

  • Steinmetz M, Minard K, Harvath S, McNicholas J, Srenlinger J, Wake C, Long E, Mach B, Hood L (1981) A molecular map of the immune response region of the major histocompatibility complex of the mouse. Nature 300:35–42

    Article  Google Scholar 

  • Sun L, Cheng XZ, Wang SH, Wang LX, Liu CY, Li ME, Ning XU (2008) Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Agric Sci China 7(6):672–677

    Article  Google Scholar 

  • Storm N, Darnhofer-Patel B (2003) MALDI-TOF mass spectrometry-based SNP genotyping. In: Single nucleotide polymorphisms. Springer, Totowa, NJ, pp 241–262

    Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tantasawat P, Trongchuen J, Prajongjai T, Thongpae T, Petkhum C, Seehalak W, Machikowa T (2010) Variety identification and genetic relationships of mungbean and blackgram in Thailand based on morphological characters and ISSR analysis. Afr J Biotechnol 9(27):4452–4464

    Google Scholar 

  • Tapp I, Malmberg L, Rennel E, Wik M, Syvanen AC (2000) Homogeneous scoring of single- nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan® Assay and molecular beacon probes. Biotechniques 28(4):732–739

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):5

    Article  Google Scholar 

  • Toojinda T, Chunwongse J, Tragoonrung S, Vanavichit A, Srinives P, Sommanus W (2001) Identification of AFLP marker linked to genes controlling iron deficiency tolerance in mungbean by bulked segregant analysis. In: 12. Genetics: Gene Revolution Era, Bangkok (Thailand), 28–30 Mar 2001

    Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120(7):1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Van K, Kang YJ, Han KS, Lee YH, Gwag JG, Moon JK, Lee SH (2013) Genome-wide SNP discovery in mungbean by Illumina HiSeq. Theor Appl Genet 126(8):2017–2027

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2018) Toward the sequence- based breeding in legumes in the post-genome sequencing era. Theor Applied Genet 17:1–20

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TV, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2018) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 19:1–8

    Google Scholar 

  • Wang X, Wang L (2016) GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7:1350

    PubMed  PubMed Central  Google Scholar 

  • Williams RC (1989) Restriction fragment length polymorphism (RFLP). Am J Phys Anthropol 32(S10):159–184

    Article  Google Scholar 

  • Yashitola J, Thirumurugan T, Sundaram RM, Naseerullah MK, Ramesha MS, Sarma NP, Sonti RV (2002) Assessment of purity of rice hybrids using microsatellite and STS markers. Crop Sci 42(4):1369–1373

    Article  CAS  Google Scholar 

  • Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87(1–2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundarum S, Kim DH (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet 84(7–8):839–844

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  PubMed  Google Scholar 

  • Zagorski N (2006) Profile of Alec J. Jeffreys. Proceedings of the National Academy of Sciences of the United States of America, vol 103(24): 8918–8920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schafleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schafleitner, R. (2020). Molecular Marker Resources and Their Application. In: Nair, R., Schafleitner, R., Lee, SH. (eds) The Mungbean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-20008-4_8

Download citation

Publish with us

Policies and ethics