Skip to main content
Log in

Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Among the many classes of repetitive elements present in the human genome, the ubiquitous “simple sequence motifs” (SSMs) composed of [A]n, [TG]n, [AG]n or codon-tandem repeats form a major source of genetic variation. Here we report a detailed molecular-genetic study of a “variable simple sequence motif” (VSSM) in the apolipoprotein C2 (apoC2) gene, which maps to the 19q13.2 region in the vicinity of the myotonic dystrophy (DM) locus. By combining in vitro DNA-amplification using the polymerase chain reaction and high-resolution gel electrophoresis, we could demonstrate a high degree of allelic variation with at least ten alleles, which differ in the number of repeated [TG] or [AG] dinucleotide units. Similar results were found for the somatostatin I gene locus. To evaluate the usefulness of SSM-length polymorphisms as genetic markers, the apoC2-VSSM was employed for linkage analysis in DM families. Our results establish that the orientation of the apolipoprotein gene cluster on 19q is cenapoE-apoC2-ter and indicate that the many thousands of structurally similar VSSMs in the human genome represent a rich source of highly informative genetic and diagnostic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge J, Kunkel L, Bruns G, Tantravahi U, Lalande M, Brewster T, Moreau E, Wilson M, Bromley W, Roderick T, Latt SA (1984) A strategy to reveal high-frequency RFLPs along the human X chromosome. Am J Hum Genet 36:546–564

    Google Scholar 

  • Assouline Z, Kerbiriou-Nabias DM, Piétu G, Thomas N, Bahnak BR, Meyer D (1988) The human gene for von Willebrand factor. Identification of repetitive Alu sequences 5′ to the transcription initiation site. Biochem Biophys Res Commun 153:1159–1166

    Google Scholar 

  • Bauer BF, Holmes WM (1989) Cloning of synthetic oligodeoxynucleotides may result in high frequency promotor mutations in E. coli. Nucleic Acids Res 17:812

    Google Scholar 

  • Brunner H, Coerwinkel-Driessen M, Smeets B, Schonk D, Schepens J, Oerlemans F, Hamel B, Ropers H, Wieringa B (1989a) Definition of subchromosomal intervals around the myotonic dystrophy locus at 19q. Prog Clin Biol Res 306:107–114

    Google Scholar 

  • Brunner HG, Korneluk RG, Coerwinkel-Driessen M, MacKenzie A, Smeets H, Lambermon HMM, Oost BA van, Wieringa B, Ropers H-H (1989b) Myotonic dystrophy is closely linked to the gene for muscle type creatine kinase (CKMM). Hum Genet 81:308–310

    Google Scholar 

  • Brunner HG, Smeets H, Lambermon HMM, Coerwinkel-Driessen M, Oost BA van, Wieringa B, Ropers H-H (1989c) A multipoint linkage map around the locus for myotonic dystrophy on chromosome 19. Genomics 4 (in press)

  • Coerwinkel-Driessen M, Schepens J, Zandvoort P van, Oost B van, Mariman E, Wieringa B (1988) NcoI RFLP at the creatine kinasemuscle type gene locus (CKMM, chromosome 19). Nucleic Acids Res 16:8743

    Google Scholar 

  • Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB (1983) Detection of sickle cell βs-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 80: 278–282

    Google Scholar 

  • Das HK, Jackson CL, Miller DA, Leff T, Breslow JL (1987) The human apolipoprotein C-II gene sequence contains a novel chromosome 19-specific minisatellite in its third intron. J Biol Chem 262:4787–4793

    Google Scholar 

  • Eadie JS, Davidson DS (1987) Guanine modification during chemical DNA synthesis. Nucleic Acids Res 15:8333–8349

    Google Scholar 

  • Fojo SS, Law SW, Brewer Jr HB (1987) The human preproapolipoprotein C-II gene. Complete nucleic acid sequence and genomic organization. FEBS Lett 213:221–226

    Google Scholar 

  • Friedrich U, Brunner H, Smeets D, Lambermon E, Ropers H-H (1987) Three-point linkage analysis employing C3 and 19cen markers assigns the myotonic dystrophy gene to 19q. Hum Genet 75:291–293

    Google Scholar 

  • Griggs RC, Wood DS, the Working Group on the molecular defect in myotonic dystrophy (1989) Criteria for establishing the validity of genetic recombination in myotonic dystrophy. Neurology 39:420–421

    Google Scholar 

  • Gross DS, Huang SY, Garrard WT (1985) Chromatin structure of the potential Z-forming sequence (dT-dG) n·(dC-dA)n. Evidence for an “alternating B” conformation. J Mol Biol 183:251–265

    Google Scholar 

  • Gusella JF (1986) DNA polymorphism and human disease. Annu Rev Biochem 55:831–854

    Google Scholar 

  • Hamada H, Petrino MG, Kakunaga (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci USA 79:6465–6469

    Google Scholar 

  • Hellman L, Steen ML, Sundvall M, Petterson U (1988) A rapidly evolving region in the immunoglobulin heavy chain loci of rat and mouse: postulated role of (dC-dA)n·(dG-dT)n sequences. Gene 68:93–100

    Google Scholar 

  • Hentschel CC (1982) Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295:714–716

    Google Scholar 

  • Hulsebos T, Wieringa B, Hochstenbach R, Smeets D, Schepens J, Oerlemans F, Zimmer J, Ropers H-H (1986) Towards early diagnosis of myotonic dystrophy: construction and characterization of a somatic cell hybrid with a single human der(19) chromosome. Cytogenet Cell Genet 43:47–56

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Google Scholar 

  • Jelinek WR, Schmid CW (1982) Repetitive sequences in eucaryotic DNA and their expression. Annu Rev Biochem 51:813–844

    Google Scholar 

  • Johnston BH (1988) The S1-sensitive form of d(C-T)n·d(A-G)n: chemical evidence for a three-stranded structure in plasmids. Science 241:1800–1804

    Google Scholar 

  • Kmiec EB, Holloman WK (1986) Homologous pairing of DNA molecules by Ustilago Rec1 protein is promoted by sequences of Z-DNA. Cell 44:545–554

    Google Scholar 

  • Korneluk RG, Macleod HL, McKeithan TW, Brook JD, MacKenzie AE (1989) A chromosome 19 clone from a translocation breakpoint shows close linkage and linkage disequilibrium with myotonic dystrophy. Genomics 4:146–151

    Google Scholar 

  • Kovacs BW, Shahbahrami B, Commings DE (1988) Polymorphic variation and dispersion of codon tandem repeats in the human genome. Am J Hum Genet 43:A190

    Google Scholar 

  • Lackner KJ, Law SW, Brewer Jr HB (1985) The human apolipoprotein A-II gene: complete nucleic acid sequence and genomic organization. Nucleic Acids Res 13:4597–4608

    Google Scholar 

  • Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics-molecular techniques and automation. Science 242:229–237

    Google Scholar 

  • Lathrop CM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465

    Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • McLean MJ, Wells RD (1988) The role of sequence in the stabilization of left-handed DNA helices in vitro and in vivo. Biochim Biophys Acta 950:243–254

    Google Scholar 

  • Myklebost O, Rogne S (1988) A physical map of the apolipoprotein gene cluster on human chromosome 19. Hum Genet 78:244–247

    Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Google Scholar 

  • Nakamura Y, Lathrop M, O'Connell, Leppert M, Lalouel J-M, White R (1988) A primary map of ten DNA markers and two serological markers for human chromosome 19. Genomics 3:67–71

    Google Scholar 

  • Nordheim A, Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674–679

    Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA)n· (dG-T)n sequences have evolutionary conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6:1781–1789

    Google Scholar 

  • Pericak-Vance MA, Yamaoka LH, Assinder RIF, Hung WY, Bartlett RJ, Stajich JM, Gaskell PC, Ross DA, Sherman S, Fey GH, Humphries S, Williamson R, Roses AD (1986) Tight linkage of apolipoprotein C2 to myotonic dystrophy on chromosome 19. Neurology 36:1418–1423

    Google Scholar 

  • Rao BS, Manor H, Martin RG (1988) Pausing in simian virus 40 DNA replication by a sequence containing (dG-dA)27·(dT-dC)27. Nucleic Acids Res 16:8077–8094

    Google Scholar 

  • Rogers J (1983) CACA sequences — the ends and the means? Nature 305:101–102

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich H, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Google Scholar 

  • Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9:369–374

    Google Scholar 

  • Schepens J, Smeets H, Hulsebos T, Brunner H, Wieringa B (1987a) Isolation of a polymorphic DNA sequence pJSB11 (D19S16) from the human chromosome 19cen-q13.2 region linked to the myotonic dystrophy (DM)gene. Nucleic Acids Res 15:3192

    Google Scholar 

  • Schepens J, Hulsebos T, Smeets H, Coerwinkel M, Brunner H, Ropers H-H, Wieringa B (1987b) A locus at 19cen-q13.2 (D19S15) containing three RFLPs linked to myotonic dystrophy (DM) is recognized by probe pJSB6. Nucleic Acids Res 15:3193

    Google Scholar 

  • Schonk D, Coerwinkel-Driessen M, Dalen van I, Oerlemans F, Smeets B, Schepens J, Hulsebos T, Cockburn D, Boyd Y, Davis M, Rettig W, Shaw D, Roses A, Ropers H, Wieringa B (1989) Definition of subchromosomal intervals around the myotonic dystrophy gene region at 19q. Genomics 4:384–396

    Google Scholar 

  • Shaw DJ, Meredith AL, Sarfarazi M, Huson SM, Brook JD, Myklebost O, Harper PS (1985) The apolipoprotein CII gene: subchromosomal localisation and linkage to the myotonic dystrophy locus. Hum Genet 70:271–273

    Google Scholar 

  • Shen LP, Rutter WJ (1984) Sequence of the human somatostatin I gene. Science 224:168–171

    Google Scholar 

  • Shen S, Slightom JL, Smithies O (1981) A history of the human fetal globin gene duplication. Cell 26:191–203

    Google Scholar 

  • Slightom JL, Blechl AE, Smithies O (1980) Human fetal Gγ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638

    Google Scholar 

  • Smeets H, Markslag P, Bril J, Hulsebos T, Brunner H, Schonk D, Ropers H-H, Wieringa B (1987) EcoRI RFLP at 19cen-q13.2 identified by the anonymous DNA sequence pPM6.7 (D19S18). Nucleic Acids Res 15:8120

    Google Scholar 

  • Smeets HJM, Poddighe J, Stuyt PMJ, Stalenhoef AFH, Ropers H-H, Wieringa B (1988a) Identification of apolipoprotein E polymorphism by using synthetic oligonucleotides. J Lipid Res 29: 1231–1237

    Google Scholar 

  • Smeets B, Poddighe J, Brunner H, Ropers H-H, Wieringa B (1988b) Tight linkage between myotonic dystrophy and apolipoprotein E genes revealed with allele-specific oligonucleotides. Hum Genet 80:49–52

    Google Scholar 

  • Smith M, Kooij-Meijs E van der, Frants RR, Havekes L, Klasen EC (1988) Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic HpaI site associated with type III hyperlipoproteinemia. Hum Genet 78:90–93

    Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Google Scholar 

  • Tsao YK, Wei CF, Robberson DL, Gotto Jr AM, Chan L (1985) Isolation and characterization of the human apolipoprotein A-II gene. Electron microscopic analysis of RNA: DNA hybrids, nucleotide sequence, identification of a polymorphic MspI site, and general structural organization of apolipoprotein genes. J Biol Chem 260:15222–15231

    Google Scholar 

  • Weber JL, May PE (1988) An abundant new class of human DNA-polymorphisms. Am J Hum Genet 43:A161

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    Google Scholar 

  • Wei CF, Tsao YK, Robberson DL, Gotto Jr AM, Brown K, Chan L (1985) The structure of the human apolipoprotein C-II gene. Electron microscopic analysis of RNA:DNA hybrids, complete nucleotide sequence, and identification of 5′ homologous sequences among apolipoprotein genes. J Biol Chem 260:15211–15221

    Google Scholar 

  • Wieringa B, Brunner H, Hulsebos T, Schonk D, Ropers H-H (1988) Genetic and physical demarcation of the locus for Dystrophia Myotonica. Adv Neurol 48:47–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeets, H.J.M., Brunner, H.G., Ropers, HH. et al. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum Genet 83, 245–251 (1989). https://doi.org/10.1007/BF00285165

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285165

Keywords

Navigation