Skip to main content
Log in

Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Future considerations of carbon-energy flows within pelagic food webs should include internal, biotic feedback controls, in addition to abiotic forcing functions, in the regulation of these flows. Over the past two decades, research on microbial communities of pelagic ecosystems has yielded data suggestive of cybernetic-like regulation operating within these communities. As presently conceived, phagotrophic protozoa have a pivotal role in such regulation as a consequence of their rapid growth, grazing, and nutrient regenerative capabilities. Feedback controls within microbial food webs may have significant effects on distal portions of pelagic ecosystems, including the fate of organic detritus and metazoan production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, A., C. Lee, F. Azam & A. Hagstrom, 1985. Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23: 99–106.

    CAS  Google Scholar 

  • Anderson, R. V., E. T. Elliot, J. F. McClellan, D. C. Coleman, C. V. Cole & H. W. Hunt, 1978. Trophic interactions in soil as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae and nematodes. Microb. Ecol. 4: 361–371.

    Article  Google Scholar 

  • Andrews, J. H., 1984. Relevance of r- and K-Theory to the ecology of plant pathogens. In M. J. Klug & C. A. Reddy (eds) Current Perspectives in Microbial Ecology, Am. Soc. Microbial., Washington, D.C.: 1–7.

    Google Scholar 

  • Antipa, G. A., K. Martin & M. T. Rintz, 1983. A note on the possible ecological significance of chemotaxis in certain ciliated protozoa. J. Protozool. 30: 55–57.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Grey, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Barsdate, R. J., R. T. Prentki & T. Fenchel, 1974. Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.

    CAS  Google Scholar 

  • Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.

    Google Scholar 

  • Berman, T., M. Nawrocki, G. T. Taylor & D. M. Karl, in press. Nutrient flux between bacteria, bacterivorous nanoprotozoans and algae. Marine Microbial Food Webs. 2.

  • Capriulo, G. M., J. Tavernas & K. Gold, 1986. Ciliate feeding: effect of food presence or absence on occurrence of striae in tintinnids. Mar. Ecol. Prog. Ser. 30: 145–158.

    Google Scholar 

  • Caron, D. A. & J. C. Goldman, in press. Nutrient regeneration. In G. M. Capriulo (ed.), Ecology of Marine Protozoa

  • Doetsch, R. N. & T. M. Cook, 1973. Introduction to Bacteria and their Ecobiology. University Park Press, Baltimore.

    Google Scholar 

  • Dyer, M. I., J. K. Detling, D. C. Coleman & D. W. Hibert, 1982. The role of herbivores in grasslands. In J. R. Estes, R. J. Tyrl & J. N. Brunken (eds), Grasses and Grasslands: Systematics and Ecology. University of Oklahoma Press, Norman: 255–295.

    Google Scholar 

  • Elliot, E. T., L. G. Castanares, D. Perlmutter & K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in an experimental planktonic community. Oikos 41: 7–16.

    Google Scholar 

  • Fenchel, T., 1977. The significance of bacterivorous protozoa in the microbial community of detrital particles. In J. Cairns (ed.), Aquatic Microbial Communities, Garland, NY 529–544.

    Google Scholar 

  • Fenchel, T., 1980. Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb. Ecol. 6: 1–11.

    Article  Google Scholar 

  • Fenchel, T., 1980. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.

    Article  Google Scholar 

  • Fenchel, T., 1982a. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel, T., 1982b. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T. & P. Harrison, 1976. The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In J. M. Anderson (ed.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific, Oxford; Lond: 285–299.

    Google Scholar 

  • Goldman, J. C., 1984. Conceptual role for microaggregates in pelagic waters. Bull. Mar. Sci. 35: 462–476.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. DeepSea Res. 32: 899–915.

    Article  Google Scholar 

  • Gude, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Article  Google Scholar 

  • Holme, T., 1957. Continuous culture studies on glycogen synthesis in Escherichia coli B. Acta. Chem. Scand. 11: 763.

    Article  CAS  Google Scholar 

  • Kirk, T. K., 1980. Studies on the physiology of lignin metabolism by white-rot fungi. In T. K. Kirk, T. Higuchi & H. Chang (eds), Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications. Vol. II. CRC Press, Boca Raton, Fla: 51–64.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Li, W. K., D. V. Subba Rao, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.

    PubMed  Google Scholar 

  • Luckinbill, L. S., 1978. r and K-selection in experimental populations of Escherichia coli. Science 202: 1201–1203.

    PubMed  Google Scholar 

  • Mattingly, S. J., J. R. Dipensio, M. L. Higgens & G. D. Shockman, 1976. Unbalanced growth and macromolecular synthesis in Streptococcus mutans FA-1. Infect. Immun. 13: 941.

    PubMed  CAS  Google Scholar 

  • Malone, T. C., 1980. Algal size. In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford (Lond.).

    Google Scholar 

  • Murphy, L. S. & E. M. Haugen, 1984. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47–58.

    Google Scholar 

  • O'Neill, R. V., 1976. Ecosystem persistence and heterotrophic regulation. Ecology 57: 1244–1253.

    Article  Google Scholar 

  • Pace, M. L. & J. D. Orcutt, 1981. The relative importance of protozoans, rotifers, and crustaceans in a planktonic community. Limnol. Oceanogr. 26: 822–830.

    Google Scholar 

  • Pace, M. L., J. E. Glasser & L. R. Pomeroy, 1984. A simulation analysis of continental shelf food webs. Mar. Biol. 82: 47–63.

    Article  Google Scholar 

  • Parslow, J. S., G. J. Doucette, F J. R. Taylor & P. J. Harrison, 1986. Feeding by the zooflagellate Pseudobodo sp. on the picoplanktonic prasinomonad Micromonas pusilla. Mar. Ecol. Prog. Ser. 29: 237–246.

    Google Scholar 

  • Patten, B. C. & E. P. Odum, 1981. The cybernetic nature of ecosystems. Am. Nat. 118: 886–895.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Google Scholar 

  • Pomeroy, L. R. & R. G. Wiegert, 1981. The ecology of a salt marsh. Springer-Verlag, New York.

    Google Scholar 

  • Pomeroy, L. R. & D. Deibel, 1986. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233: 359–361.

    PubMed  Google Scholar 

  • Rivier, A., D. C. Brownlee, R. W. Sheldon & F. Rassoulzadegan, 1985. Growth of microzooplankton: a comparative study of bacterivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 36–51.

    Google Scholar 

  • Sheldon, R. W., A. Prakash & W. H. Sutcliff, 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Article  Google Scholar 

  • Sheldon, R. W., W. H. Sutcliffe & M. A. Paranjape, 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd. Can. 34: 2344–2353.

    Google Scholar 

  • Sheldon, R. W., P. Nival & F. Rassoulzadegan, 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31: 184–188.

    Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: M. Klug & C. A. Reddy (eds), Current perspectives in microbial ecology. ASM, Washington, DC: 412–423.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1982. Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnol. Oceanogr. 27: 765–769.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196–1201.

    PubMed  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Article  Google Scholar 

  • Sherr, E. B., B. F. Sherr & G.-A. Paffenhofer, 1986a. Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs? Mar. Microb. Food Webs 1: 61–80.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr, R. D. Fallon & S. Y. Newell, 1986b. Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.

    Google Scholar 

  • Sibbald, M. J., L. K. Albright & P. R. Sibbald, 1987. The chemosensory response of a heterotrophic microflagellate to bacteria and several nitrogen compounds. Mar. Ecol. Prog. Ser. in press.

  • Sieburth, J. McN., 1984. Protozoan bacterivory in pelagic marine waters. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic activity in the sea. Plenum Press, (NY): 405–444.

    Google Scholar 

  • Sieburth, J. McN. & P. G. Davis, 1982. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Sea. Annls. Inst. Oceanogr. 58(S): 285–296.

    Google Scholar 

  • Sieburth, J. McN., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1265.

    Google Scholar 

  • Suttle, C. A., A. M. Chan, W. D. Taylor & P. J. Harrison, 1986. Grazing of planktonic diatoms by microflagellates. J. Plank. Res. 8: 393–398.

    Google Scholar 

  • Taylor, G. T., R. Iturriaga & C. W. Sullivan, 1985. Interactions of bacterivorous grazers and heterotrophic bacteria with dissolved organic matter. Mar. Ecol. Prog. Ser. 22: 129–141.

    Google Scholar 

  • Wiebe, W. J., 1984. Some potentials for the use of microorganisms in ecological theory. In M. J. Klug & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington (D.C.): 17–21.

    Google Scholar 

  • Williams, P. J. leB, 1984. A review of measurements of respiration rates of marine plankton populations. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic Activity in the Sea. Plenum Press, New York: 357–390.

    Google Scholar 

  • Wright, R. T. & R. C. Coffin, 1984. Factors affecting bacterioplankton density and productivity in salt marsh estuaries. In M. J. Klug & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. ASM, Washington, DC: 485–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherr, B.F., Sherr, E.B. & Hopkinson, C.S. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159, 19–26 (1988). https://doi.org/10.1007/BF00007364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007364

Keywords

Navigation