Skip to main content
Log in

A simulation analysis of continental shelf food webs

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Energy flow through continental shelf food webs was examined using a simulation model. The model structure expands the two traditional marine food chains of phytoplankton-zooplankton-pelagic fish and benthos-demersal fish into a complex web which includes detritus, dissolved organic matter (DOM), bacteria, protozoa, and mucus net feeders. Simulation of energy flux for different shelf systems using the expanded web revealed that heterotrophic microorganisms and their predators account for a significant component of the energy flux in the continental shelf ecosystem. Contrary to previous models, where all phytoplankton were considered to be grazed by zooplankton, our simulation results indicate that only slightly more than 50% of the annual net primary production is grazed. A substantial quantity of the phytoplankton production directly becomes detritus. Bacteria mineralize detritus and DOM produced by phytoplankton and other components of the food web, converting these to biomass with high efficiency. Consequently, the model predicts that planktonic bacterial production is equivalent to zooplankton production. Exclusion of the bacteria requires the assumption that all DOM is either exported from the system or consumed by another component of the food web. Neither of these assumptions can be supported by present knowledge of the dynamics of DOM in the sea. Model simulations were also employed to test the hypothesis that production exceeds consumption on continental shelves, resulting in exports of 50% of the annual primary production. Simulations of shelves with high rates of primary production resulted in a particulate export of 27% and realistic estimates of secondary production. Results of other simulations suggest that shelves with lower primary production cannot export production and still maintain the macrobenthos and their predators. General properties about continental shelves can also be inferred from the model. From simulations of shelves of differing primary production, nanoplankton are predicted to account for a greater proportion of the primary production in nutrient limited systems. Benthic production appears to be related to both the quantity of primary production and the sinking rates of the phytoplankton. The model indicates that zooplankton fecal inputs to the shelf benthos are only a small portion of the total detrital flux, leading to the prediction that fecal pellets are of little significance in determining benthic production. Finally, the model generates production efficiencies that are highly variable depending on the type of system and kind of populations involved. We argue that the assumed ecological efficiency of 10% should be abandoned for continental shelves and other ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Atkinson, L. P.: Modes of Gulf Stream intrusion into the South Atlantic Bight shelf waters. Geophys. Res. Lett. 7, 583–586 (1977)

    Google Scholar 

  • Azam, F. and R. E. Hodson: Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22, 492–501 (1977)

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983)

    Google Scholar 

  • Banse, K.: Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size — a review. J. Phycol. 12, 135–140 (1976)

    Google Scholar 

  • Banse, K.: On weight dependence of net growth efficiency and specific respiration rates among field populations. Oecologia 38, 111–126 (1979)

    Google Scholar 

  • Banse, K. and S. Mosher. Adult body mass and annual production/biomass relationships of field populations. Ecol. Monogr. 50, 355–379 (1980)

    Google Scholar 

  • Barber, R. T. and R. L. Smith: Coastal upwelling ecosystems. In: Analysis of marine ecosystems, pp 31–68. Ed. by A. R. Longhurst. New York: Academic Press 1981

    Google Scholar 

  • Birkett, L.: Experimental determination of food conversion and its application to ecology. In: Marine food chains, pp 261–264. Ed. by J. H. Steele. Berkley. University of California Press 1970

    Google Scholar 

  • Blanton, J. O., L. P. Atkinson, L. J. Pietrafesa and T. N. Lee: The intrusion of Gulf Stream water across the continental shelf due to topographically-induced upwelling. Deep-Sea Res. 28, 393–405 (1981)

    Google Scholar 

  • Buchanan, J. B. and R. M. Warwick: An estimate of benthicmicrofaunal production in the offshore mud of the Northumberland coast. J. mar. biol. Assoc. U.K. 54, 197–222 (1974)

    Google Scholar 

  • Conover, R. J.: Transformation of organic matter. In: Marine ecology, Vol. 4, pp 221–500. Ed. by O. Kinne. New York: Wiley 1978

    Google Scholar 

  • Cooney, R. J. and K. O. Coyle: Trophic implications of crossshelf copepod distributions in the southeastern Bering Sea. Mar. Biol. 70, 187–196 (1982)

    Google Scholar 

  • Copping, A. E. and C. J. Lorenzen: Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25, 873–882 (1980)

    Google Scholar 

  • Cosper, T. C. and M. R. Reeve. Digestive efficiency of the chaetognath Sagitta hispida. J. exp. mar. Biol. Ecol. 17, 33–38 (1975)

    Google Scholar 

  • Coull, B. C. and W. B. Vernberg: Harpacticoid copepod respiration: Enhydrosoma propinguum and Longipedia helgolandica. Mar. Biol. 5, 341–344 (1970)

    Google Scholar 

  • Cuhel, R. L., H. W. Jannasch, C. D. Taylor and D. R. S. Lean: Microbial growth and macromolecular synthesis in the northwestern Atlantic. Limnol. Oceanogr. 28, 1–18 (1983)

    Google Scholar 

  • Dagg, M. J. and J. T. Turner: The impact of copepod grazing on the phytoplankton of Georges Bank and the New York Bight. Can. J. Fish. aquat. Sci. 39, 979–990 (1982)

    Google Scholar 

  • Dagg, M. J., J. Vidal, T. E. Whitledge, R. L. Iverson and J. J. Goering: The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom. Deep-Sea Res. 29, 45–63 (1982)

    Google Scholar 

  • Deibel, D.: Laboratory determined mortality, fecundity and growth rates of Thalia democratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J. Plank. Res. 4, 143–153 (1982a)

    Google Scholar 

  • Deibel, D.: Laboratory measured grazing and ingestion rates of the salp, Thalia democratica Forskal, and the doliolid Dolioletta gegenbauri Jljanin (Tunicata, Thaliacea). J. Plank. Res. 4, 189–201 (1982b)

    Google Scholar 

  • Ducklow, H. W.: Production and fate of bacteria in the ocean. BioScience 33, 494–501 (1983)

    Google Scholar 

  • Eppley, R. W., J. N. Rogers and J. J. McCarthy: Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969)

    Google Scholar 

  • Fenchel, T.: Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8, 225–231 (1982)

    Google Scholar 

  • Flint, R. W. and N. N. Rabalais: Environmental studies of a marine ecosystem. Austin, Texas: Univ. of Texas Press 1981

    Google Scholar 

  • Frost, B. W.: Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972)

    Google Scholar 

  • Fuhrman, J. A. and F. Azam: Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. environ. Microbiol. 39, 1085–1095 (1980)

    Google Scholar 

  • Gerlach, S. A.: Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33, 55–69 (1978)

    Google Scholar 

  • Haines, E. B. and W. M. Dunstan: The distribution and relation of particulate organic material and primary productivity in the Georgia Bight. Estuar. coast. mar. Sci. 3, 431–441 (1975)

    Google Scholar 

  • Hargrave, B. T.: The utilization of benthic microflora by Hyallela azteca (Amphipoda). J. Anim. Ecol. 39, 427–437 (1970)

    Google Scholar 

  • Hargrave, B. T.: Factors affecting the flux of organic matter to sediments in a marine bay. In: Marine benthic dynamics, pp 219–222. Ed. by K. R. Tenore and B. C. Coull. Columbia: University of South Carolina Press 1980

    Google Scholar 

  • Heinbokel, J. F.: Studies on the functional role of Tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47, 177–189 (1978)

    Google Scholar 

  • Hobbie, J. E. and C. C. Crawford: Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14, 528–532 (1969)

    Google Scholar 

  • Hodson, R. E., A. E. Maccubbin and L. R. Pomeroy: Dissolved adenosine triphosphate utilization by free living and attached bacterioplankton. Mar. Biol. 64, 43–51 (1981)

    Google Scholar 

  • Hofmann, E. E., J. M. Klinck and G.-A. Paffenhöfer: Concentrations and vertical fluxes of zooplankton fecal pellets on a continental shelf. Mar. Biol. 61, 327–335 (1981)

    Google Scholar 

  • Johannes, R. E. and M. Satomi: Measuring organic matter retained by aquatic invertebrates. J. Fish. Res. Bd Can. 24, 2467–2471 (1967)

    Google Scholar 

  • Karl, D. M.: Measurements of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. environ. Microbiol. 33, 777–783 (1979)

    Google Scholar 

  • Kay, D. G. and A. E. Brafield. The energy relations of the polychaeta Neanthes (Nereis) virens (Sars). J. Anim. Ecol. 42, 673–692 (1973)

    Google Scholar 

  • Kofoed, L. H.: The feeding biology of Hydrobia ventrosa Montagu. II. Allocation of the components of the carbon budget and the significance of the secretion of dissolved organic material. J. exp. mar. Biol. Ecol. 19, 243–256 (1975)

    Google Scholar 

  • Lampert, W.: Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978)

    Google Scholar 

  • Lasker, R.: Utilization of zooplankton energy by a Pacific sardine population in the California current. In: Marine food chains, pp 265–284. Ed. by J. H. Steele. Berkely: Univ. of California Press 1970

    Google Scholar 

  • Lee, C. and J. L. Bada: Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol. Oceanogr. 22, 502–510 (1977)

    Google Scholar 

  • Lee, J. J., J. H. Tietjen, N. M. Saks, G. G. Ross, H. Rubin and W. A. Muller: Educing and modeling the functional relationships within sublittoral salt march aufwuchs communities — inside one of the black boxes. In: Estuarine research, Vol. 1, pp 710–734. Ed. by L. E. Cronin. New York: Academic Press 1975

    Google Scholar 

  • Madin, L. P.: Field observations on the feeding behavior of salps. (Tunicata, Thaliacea). Mar. Biol. 25, 143–147 (1974)

    Google Scholar 

  • Mague, T. H., E. Friberg, D. J. Hughes and I. Morris: Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25, 262–279 (1980)

    Google Scholar 

  • Malone, T. C.: Size fractioned primary productivity of marine phytoplankton. In: Primary productivity in the sea, pp 301–319. Ed. by P. G. Falkowski. New York: Plenum 1980

    Google Scholar 

  • McAllister, C. D., N. Shah and J. D. H. Strickland: Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. J. Fish. Res. Bd Can. 21, 159–181 (1964)

    Google Scholar 

  • Mills, E. L.: The structure and dynamics of shelf and slope ecosystems off the North East coast of North America. In: Marine benthic dynamics, pp 25–47. Ed. by K. R. Tenore and B. C. Coull. Columbia: University of South Carolina Press 1980

    Google Scholar 

  • Mullin, M. M.: Production of zooplankton in the ocean: The present status and problems. Oceanogr. mar. Biol. Ann. Rev. 7, 293–314 (1969)

    Google Scholar 

  • Mullin, M. M. and E. A. Brooks: Growth and metabolism of two marine planktonic copepods as influenced by temperature and type of food. In: Marine food chains, pp 74–95. Ed. by J. H. Steele. Berkley: University of California Press 1970

    Google Scholar 

  • Nichols, F. H.: Dynamics and energetics of three deposit-feeding benthic invertebrate populations in Pudget Sound, Washington. Ecol. Monogr. 45, 57–82 (1975)

    Google Scholar 

  • Paffenhöfer, G.-A. and S. C. Knowles: Feeding of marine planktonic copepods on mixed phytoplankton. Mar. Biol. 48, 143–152 (1978)

    Google Scholar 

  • Paffenhöfer, G.-A. and S. C. Knowles: Ecological implications of fecal pellet size, production and consumption by copepods. J. mar. Res. 37, 35–49 (1979)

    Google Scholar 

  • Parsons, T. R. and R. J. LeBrasseur: The availability of food to different trophic levels in a marine food chain. In: Marine food chains, pp 325–343. Ed. by J. H. Steele. Berkley: University of California Press 1970

    Google Scholar 

  • Parsons, T. R., M. Takahashi and B. Hargrave: Biological oceanographic processes, 332 pp. New York: Pergamon 1977

    Google Scholar 

  • Payne, W. J. and W. J. Wiebe: Growth yields and efficiency in chemosynthetic microorganisms. Ann. Rev. Microbiol. 32, 155–183 (1978)

    Google Scholar 

  • Peters, R.: Ecological implications of body size, 329 pp. Cambridge: Cambridge University Press 1983

    Google Scholar 

  • Platt, T. and B. Irwin: Caloric content of phytoplankton. Limnol. Oceanogr. 18, 306–310 (1973)

    Google Scholar 

  • Pomeroy, L. R.: The ocean's food web, a changing paradigm. BioScience 24, 499–504 (1974)

    Google Scholar 

  • Pomeroy, L. R.: Secondary production mechanisms of continental shelf communities. In: Ecological processes in coastal and marine ecosystems, pp 163–186. Ed. by R. J. Livingstone. New York: Plenum 1979

    Google Scholar 

  • Pomeroy, L. R.: Significance of microorganisms in carbon and energy flow in marine ecosystems. In: Perspectives in microbial ecology. Ed. by M. J. Klug and C. A. Reddy. Am. Soc. Microbiol.: Washington 1984

    Google Scholar 

  • Reeve, M. R.: Comparative experimental studies on the feeding of chaetognaths and ctenophores. J. Plank. Res. 2, 381–393 (1980)

    Google Scholar 

  • Riley, G. A.: Factors controlling phytoplankton populations on Georges Bank. J. mar. Res. 6, 54–73 (1946)

    Google Scholar 

  • Riley, G. A., H. Stommel and D. A. Bumpus: Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham. Oceanogr. Coll. 12, 1–169 (1949)

    Google Scholar 

  • Rubin, H. A. and J. J. Lee: Informational energy flows as an aspect of the ecological efficiency of marine ciliates. J. theor. Biol. 62, 69–91 (1976)

    Google Scholar 

  • Sameoto, D. D.: Yearly respiration rate and estimated energy budget for Sagitta elegans. J. Fish. Res. Bd Can. 29, 987–996 (1972)

    Google Scholar 

  • Slobodkin, L. B.: Growth and regulation of animal populations, 184 pp. New York: Holt, Rinehart, and Winston 1961

    Google Scholar 

  • Small, L. F., H. Curl and W. A. Glooschenko. Estimates of primary production off Oregon using an improved chlorophyll light technique. J. Fish. Res. Bd Can. 29, 1261–1267 (1972)

    Google Scholar 

  • Smayda, T. J.: The suspension and sinking of phytoplankton in the sea. Oceanogr. mar. Biol. Ann. Rev. 8, 353–414 (1970)

    Google Scholar 

  • Smith, P. E. and R. W. Eppley: Primary production and the anchovy population in the Southern California Bight: comparison of time series. Limnol. Oceanogr. 27, 1–17 (1982)

    Google Scholar 

  • Steele, J. H.: The structure of marine ecosystems, 128 pp. Cambridge: Harvard University Press 1974

    Google Scholar 

  • Steele, J. H. and B. W. Frost: The structure of plankton communities. Philos. Trans. R. Soc. Lond. Ser. B. 280, 485–534 (1977)

    Google Scholar 

  • Steele, J. H. and E. W. Henderson. A simple plankton model. Am. Nat. 117, 676–691 (1981)

    Google Scholar 

  • Tenore, K. R., L. Cammen, S. E. G. Findlay, and N. Phillips: Perspectives of research on detritus: do factors controlling the vailability of detritus to macro-consumers depend on its source. J. mar. Res. 40, 473–490 (1982)

    Google Scholar 

  • Thomas, J. P.: The influence of the Altamaha River on primary production beyond the mouth of the river, 60 pp. M. S. thesis. University of Georgia, Athens 1966

    Google Scholar 

  • Vaccaro, R. F., S. E. Hicks, H. W. Jannasch and F. G. Carey: The occurrence and role of glucose in seawater. Limnol. Oceanogr. 13, 356–360 (1968)

    Google Scholar 

  • Walsh, J. J.: A spatial simulation model of the Peru upwelling ecosystem. Deep-Sea Res. 22, 201–236 (1975)

    Google Scholar 

  • Walsh, J. J.: A carbon budget for overfishing off Peru. Nature, Lond. 290, 300–304 (1981a)

    Google Scholar 

  • Walsh, J. J.: Shelf-sea ecosystems. In: Analysis of marine ecosystems, pp 159–198. Ed. by A. R. Longhurst. New York: Academic Press 1981 b

    Google Scholar 

  • Walsh, J. J., T. E. Whitledge, F. W. Barnevik, C. D. Winick, S. O. Howe, W. E. Esaias and J. T. Scott: Wind events and food chain dynamics within the New York Bight. Limnol. Oceanogr. 23, 659–683 (1978)

    Google Scholar 

  • Walsh, J. J., G. T. Rowe, R. L. Iverson and C. P. McRoy: Biological export of shelf carbon is a sink of the global CO2 cycle. Nature, Lond. 291, 196–201 (1981)

    Google Scholar 

  • Wiegert, R. G.: Mathematical representation of ecological interactions. In: Ecosystem analysis and prediction. Proceedings of the SIAM, SIMS conference, Alta, Utah pp 43–53. Ed. by S. A. Levin. Philadelphia: Philadelphia Society of Industrial and Applied Mathematics 1975

    Google Scholar 

  • Wiegert, R. G.: Population models: experimental tools for analysis of ecosystems. In: Proceedings of colloquium on analysis of ecosystems, pp 239–279. Ed. by D. J. Horn, R. Mitchell and G. R. Stairs. Columbus: Ohio State University Press 1979

    Google Scholar 

  • Wiegert, R. G., R. R. Christian and R. L. Wetzel: A model view of the marsh. In: Ecology of a salt marsh, pp 183–218. Ed. by L. R. Pomeroy and R. G. Wiegert. New York: Springer-Verlag 1981

    Google Scholar 

  • Williams, P. J. leB.: Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J. mar. biol. Assoc. U.K. 50, 859–870 (1970)

    Google Scholar 

  • Williams, P. J. leB.: Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch., Sonderh. 5, 1–28 (1981)

    Google Scholar 

  • Wood, J. D., Nitrogen excretion in some marine teleosts. Can. J. Biochem. Physiol. 36, 1237–1242 (1958)

    Google Scholar 

  • Wright, R. T.: Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. environ. Microbiol. 36, 297–305 (1978)

    Google Scholar 

  • Wright, R. T. and J. E. Hobbie: Use of glucose and acetate by bacteria and algae in aquatic systems. Ecology. 47, 447–464 (1966)

    Google Scholar 

  • Yingst, J. Y.: The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J. exp. mar. Biol. Ecol. 23, 55–69 (1976)

    Google Scholar 

  • Yoder, J. A., L. P. Atkinson, S. S. Bishop, E. E. Hofmann and T. N. Lee: Effect of upwelling on phytoplankton productivity on the outer southeastern U.S. continental shelf. Limnol. Oceanogr. 26, 1103–1110 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Doyle, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pace, M.L., Glasser, J.E. & Pomeroy, L.R. A simulation analysis of continental shelf food webs. Mar. Biol. 82, 47–63 (1984). https://doi.org/10.1007/BF00392763

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392763

Keywords

Navigation