Skip to main content

Dementia Therapy Targeting Tau

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

Tau is a microtubule-associated tau proteins but it has also non-microtubular functions. It aggregates in Alzheimer’s disease and many neurodegenerative disorders referred to as tauopathies. Such aggregation may result from mutations on the tau gene, MAPT, dysregulation in alternative splicing, post-translational modifications or truncation. This final chapter addresses some of the various researches on a therapeutic potential around the tau protein and its gene, MAPT. Many therapeutic strategies are ongoing but they are hampered by the lack of knowledge on tau physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sotiropoulos I, Galas M-C, Silva JM, Skoulakis E, Wegmann S, Maina MB, et al. Atypical, non-standard functions of the microtubule associated tau protein. Acta Neuropathol Commun. BioMed Central. 2017;5(1):91.

    Article  CAS  Google Scholar 

  2. Jadhav S, Avila J, Schöll M, Kovacs GG, Kovari E, Skrabana R, et al. A walk through tau therapeutic strategies. Acta Neuropathol Commun. BioMed Central. 2019;7(1):22.

    Article  Google Scholar 

  3. Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci.. Nature Publishing Group. 2019;22(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  4. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. American Association for the Advancement of Science. 2007;316(5825):750–4.

    Article  CAS  PubMed  Google Scholar 

  5. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci.. Society for Neuroscience. 2013;33(31):12887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, et al. Tau deletion promotes brain insulin resistance. J Exp Med.. Rockefeller University Press. 2017;214(8):2257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS, Sultan A, et al. Prefibrillar tau oligomers alter the nucleic acid protective function of tau in hippocampal neurons in vivo. Neurobiol Dis. 2015;82:540–51.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed T, Van der Jeugd A, Blum D, Galas M-C, D’Hooge R, Buee L, et al. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging. Elsevier. 2014;35(11):2474–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, et al. Genetic ablation of dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Mol Gen. 2010;19(20):3959–69.

    Article  CAS  Google Scholar 

  10. Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Human Mol Gen. 2015;24(23):6721–35.

    Article  CAS  Google Scholar 

  11. DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. American Association for the Advancement of Science. 2017;9(374):eaag0481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caillet-Boudin M-L, Buee L, Sergeant N, Lefebvre B. Regulation of human MAPT gene expression. Mol Neurodegener. BioMed Central. 2015;10(1):28.

    Article  CAS  Google Scholar 

  13. Caillet-Boudin M-L, Fernandez-Gomez F-J, Tran H, Dhaenens C-M, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci. Frontiers. 2014;6:57.

    Google Scholar 

  14. Kalbfuss B, Mabon SA, Misteli T. Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem. American Society for Biochemistry and Molecular Biology. 2001;276(46):42986–93.

    Article  CAS  PubMed  Google Scholar 

  15. Avale ME, Rodriguez-Martin T, Gallo J-M. Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing. Human Mol Gen. 2013;22(13):2603–11.

    Article  CAS  Google Scholar 

  16. Goodwin M, Mohan A, Batra R, Lee K-Y, Charizanis K, Fernandez-Gomez F-J, et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the Myotonic dystrophy brain. Cell Rep. 2015;12(7):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsuo ES, Shin RW, Billingsley ML, Van de Voorde A, O’Connor M, Trojanowski JQ, et al. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron. 1994;13(4):989–1002.

    Article  CAS  PubMed  Google Scholar 

  18. Buee-Scherrer V, Condamines O, Mourton-Gilles C, Jakes R, Goedert M, Pau B, et al. AD2, a phosphorylation-dependent monoclonal antibody directed against tau proteins found in Alzheimer’s disease. Brain Res Mol Brain Res. 1996;39(1–2):79–88.

    Article  CAS  PubMed  Google Scholar 

  19. Sergeant N, Bussiere T, Vermersch P, Lejeune JP, Delacourte A. Isoelectric point differentiates PHF-tau from biopsy-derived human brain tau proteins. Neuroreport. 1995;6(16):2217–20.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann R, Lee VM, Leight S, Varga I, Otvos L. Unique Alzheimer’s disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry.. American Chemical Society. 1997;36(26):8114–24.

    Article  CAS  PubMed  Google Scholar 

  21. Bussiere T, Hof PR, Mailliot C, Brown CD, Caillet-Boudin ML, Perl DP, et al. Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol. 1999;97(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  22. Delobel P, Flament S, Hamdane M, Mailliot C, Sambo AV, Begard S, et al. Abnormal tau phosphorylation of the Alzheimer-type also occurs during mitosis. J Neurochem. 2002;83(2):412–20.

    Article  CAS  PubMed  Google Scholar 

  23. Malia TJ, Teplyakov A, Ernst R, Wu S-J, Lacy ER, Liu X, et al. Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins.. John Wiley & Sons, Ltd. 2016;84(4):427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iqbal K, Liu F, Gong C-X, Alonso ADC, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol.. Springer-Verlag. 2009;118(1):53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Despres C, Byrne C, Qi H, Cantrelle F-X, Huvent I, Chambraud B, et al. Identification of the tau phosphorylation pattern that drives its aggregation. Proc Natl Acad Sci USA. 2017;114(34):9080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tracy TE, Sohn PD, Minami SS, Wang C, Min S-W, Li Y, et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes Tauopathy-related memory loss. Neuron. 2016;90(2):245–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, et al. Acetylation of tau inhibits its degradation and contributes to Tauopathy. Neuron.. Elsevier Inc. 2010;67(6):953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun.. Nature Publishing Group. 2011;2(1):252.

    Article  PubMed  Google Scholar 

  29. Cook C, Carlomagno Y, Gendron TF, Dunmore J, Scheffel K, Stetler C, et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Human Mol Gen. 2014;23(1):104–16.

    Article  CAS  Google Scholar 

  30. Kamah A, Huvent I, Cantrelle F-X, Qi H, Lippens G, Landrieu I, et al. Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal tau protein. Biochemistry. 2014;53(18):3020–32.

    Article  CAS  PubMed  Google Scholar 

  31. Min S-W, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med.. Nature Publishing Group. 2015;21(10):1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forlenza OV, De-Paula VJR, Diniz BSO. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci. 2014;5(6):443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leroy K, Ando K, Heraud C, Yilmaz Z, Authelet M, Boeynaems JM, et al. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis. 2010;19(2):705–19.

    Article  CAS  PubMed  Google Scholar 

  34. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry.. Cambridge University Press. 2011;198(5):351–6.

    Article  PubMed  Google Scholar 

  35. Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I, et al. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Diseas. 2009;35(3):359–67.

    Article  CAS  Google Scholar 

  36. Georgievska B, Sandin J, Doherty J, Mörtberg A, Neelissen J, Andersson A, et al. AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J Neurochem. John Wiley & Sons, Ltd (10.1111). 2013;125(3):446–56.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed T, Blum D, Burnouf S, Demeyer D, Buée-Scherrer V, D’Hooge R, et al. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model. Neurobiol Aging. 2015;36(2):730–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andrés MV, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29(4):470–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bruch J, Xu H, Rösler TW, De Andrade A, Kuhn P-H, Lichtenthaler SF, et al. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol Med. 2017;9(3):371–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Poele Te RH, Aherne GW, et al. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS ONE. Bernhard EJ, editor. Public Library of Science. 2012;7(1):e28568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mueed Z, Tandon P, Maurya SK, Deval R, Kamal MA, Poddar NK. Tau and mTOR: the hotspots for multifarious diseases in Alzheimer’s development. Front Neurosci. Frontiers. 2018;12:1017.

    Article  Google Scholar 

  42. Domise M, Didier S, Marinangeli C, Zhao H, Chandakkar P, Buee L, et al. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep. Nature Publishing Group. 2016;6(1):26758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frédérick C, Ando K, Leroy K, Heraud C, Suain V, Buee L, et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J Alzheimers Dis. IOS Press. 2015;44(4):1145–56.

    Article  CAS  PubMed  Google Scholar 

  44. Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. BioMed Central. 2015;7(1):35.

    Article  CAS  Google Scholar 

  45. Hebron ML, Lonskaya I, Moussa CE-H. Tyrosine kinase inhibition facilitates autophagic SNCA/α-synuclein clearance. Autophagy.. Taylor & Francis. 2013;9(8):1249–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hebron ML, Javidnia M, Moussa CE-H. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–9.

    Article  CAS  PubMed  Google Scholar 

  47. Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated ‘pas de Deux’. FEBS Lett.. John Wiley & Sons, Ltd. 2018;592(7):1079–95.

    Article  CAS  PubMed  Google Scholar 

  48. van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Götz J, et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA. 2010;107(31):13888–93.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nakamura K, Zhou XZ, Lu KP. Distinct functions of cis and trans phosphorylated tau in Alzheimer’s disease and their therapeutic implications. Curr Mol Med. 2013;13(7):1098–109.

    Article  CAS  PubMed  Google Scholar 

  50. Galas MC, Dourlen P, Begard S, Ando K, Blum D, Hamdane M, et al. The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem. 2006;281(28):19296–304.

    Article  CAS  PubMed  Google Scholar 

  51. Hamdane M, Dourlen P, Bretteville A, Sambo AV, Ferreira S, Ando K, et al. Pin1 allows for differential tau dephosphorylation in neuronal cells. Mol Cell Neurosci. 2006;32(1–2):155–60.

    Article  CAS  PubMed  Google Scholar 

  52. Smet C, Sambo AV, Wieruszeski JM, Leroy A, Landrieu I, Buee L, et al. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on tau. Biochemistry. 2004;43(7):2032–40.

    Article  CAS  PubMed  Google Scholar 

  53. Smet C, Wieruszeski JM, Buee L, Landrieu I, Lippens G. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of tau protein. FEBS Lett. 2005;579(19):4159–64.

    Article  CAS  PubMed  Google Scholar 

  54. Giustiniani J, Guillemeau K, Dounane O, Sardin E, Huvent I, Schmitt A, et al. The FK506-binding protein FKBP52 in vitro induces aggregation of truncated tau forms with prion-like behavior. FASEB J. Federation of American Societies for Experimental Biology. 2015;29(8):3171–81.

    Article  CAS  PubMed  Google Scholar 

  55. Gorantla NV, Chinnathambi S. Tau protein squired by molecular chaperones during Alzheimer’s disease. J Mol Neurosci.. Springer US. 2018;66(3):356–68.

    Article  CAS  PubMed  Google Scholar 

  56. Yu Y, Zhang L, Li X, Run X, Liang Z, Li Y, et al. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS ONE. Götz J, editor. Public Library of Science. 2012;7(4):e35277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Smith K, Pearson M, Hughes A, Cosden ML, Marcus J, et al. Early intervention of tau pathology prevents behavioral changes in the rTg4510 mouse model of tauopathy. PLoS ONE. Ginsberg SD, editor. Public Library of Science. 2018;13(4):e0195486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain. 2012;135(Pt 7):2169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018;146:251–9.

    Article  CAS  PubMed  Google Scholar 

  60. Thatcher GRJ, Bennett BM, Reynolds JN. NO chimeras as therapeutic agents in Alzheimer’s disease. Curr Alzheimer Res. 2006;3(3):237–45.

    Article  CAS  PubMed  Google Scholar 

  61. Thatcher GRJ, Luo J, Vandevrede L, Qin Z, Lee S, Abdelhamid R, et al. NO/cGMP/pCREB reactivation reverses cognition deficits and attenuates amyloid ß neuropathology in transgenic models of Alzheimer’s disease. BMC Pharmacol Toxicol. 2013;14(Suppl 1):P72.

    Google Scholar 

  62. Hernandez I, Luna G, Rauch JN, Reis SA, Giroux M, Karch CM, et al. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med. American Association for the Advancement of Science. 2019;11(485):eaat3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang L, Ash PEA, Maziuk BF, Ballance HI, Boudeau S, Abdullatif AA, et al. TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol. 2nd ed. Springer Berlin Heidelberg. 2019;137(2):259–77.

    Article  CAS  PubMed  Google Scholar 

  64. Apicco DJ, Ash PEA, Maziuk B, LeBlang C, Medalla M, Abdullatif Al A, et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci.. Nature Publishing Group. 2018;21(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  65. Sergeant N, Vingtdeux V, Eddarkaoui S, Gay M, Evrard C, Le Fur N, et al. New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease. Neurobiol Dis. 2019;129:217–233.

    Google Scholar 

  66. Melnyk P, Vingtdeux V, Burlet S, Eddarkaoui S, Grosjean M-E, Larchanché P-E, et al. Chloroquine and chloroquinoline derivatives as models for the design of modulators of amyloid peptide precursor metabolism. ACS Chem Neurosci.. American Chemical Society. 2015;6(4):559–69.

    Article  CAS  PubMed  Google Scholar 

  67. Kingston DG. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 1994;12(6):222–7.

    Article  CAS  PubMed  Google Scholar 

  68. Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan A-ML, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci.. Society for Neuroscience. 2010;30(41):13861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fitzgerald DP, Emerson DL, Qian Y, Anwar T, Liewehr DJ, Steinberg SM, et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol Cancer Therap. American Association for Cancer Research. 2012;11(9):1959–67.

    Article  CAS  Google Scholar 

  70. Zumbar CT, Usubalieva A, King PD, Li X, Mifsud CS, Dalton HM, et al. The CNS penetrating taxane TPI 287 and the AURKA inhibitor alisertib induce synergistic apoptosis in glioblastoma cells. J Neurooncol.. Springer US. 2018;137(3):481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun C-S, Lee C-C, Li Y-N, Yao-Chen Yang S, Lin C-H, Chang Y-C, et al. Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Sci Rep.. Nature Publishing Group. 2015;5(1):14992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. d’Orange M, Auregan G, Cheramy D, Gaudin-Guérif M, Lieger S, Guillermier M, et al. Potentiating tangle formation reduces acute toxicity of soluble tau species in the rat. Brain. 2018;141(2):535–49.

    Article  PubMed  Google Scholar 

  73. Bulic B, Pickhardt M, Mandelkow E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J Med Chem. 2013;56(11):4135–55.

    Article  CAS  PubMed  Google Scholar 

  74. Baddeley TC, McCaffrey J, Storey JMD, Cheung JKS, Melis V, Horsley D, et al. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer’s disease. J Pharmacol Exp Ther. 2015;352(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  75. Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JMD, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis.. IOS Press. 2015;44(2):705–20.

    Article  CAS  PubMed  Google Scholar 

  76. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci.. Society for Neuroscience. 2007;27(34):9115–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14(7):399–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137(Pt 10):2834–46.

    Article  PubMed  Google Scholar 

  79. McEwan WA, Falcon B, Vaysburd M, Clift D, Oblak AL, Ghetti B, et al. Cytosolic fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci USA. 2017;114(3):574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun. BioMed Central. 2017;5(1):99.

    Article  CAS  Google Scholar 

  81. Sharma AM, Thomas TL, Woodard DR, Kashmer OM, Diamond MI. Tau monomer encodes strains. Elife. eLife Sciences Publications Limited. 2018;7:909.

    Article  Google Scholar 

  82. Usenovic M, Niroomand S, Drolet RE, Yao L, Gaspar RC, Hatcher NG, et al. Internalized tau oligomers cause Neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci.. Society for Neuroscience. 2015;35(42):14234–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Audouard E, Houben S, Masaracchia C, Yilmaz Z, Suain V, Authelet M, et al. High-molecular-weight paired helical filaments from Alzheimer brain induces seeding of wild-type mouse tau into an Argyrophilic 4R tau pathology in vivo. Am J Pathol. 2016;186(10):2709–22.

    Article  CAS  PubMed  Google Scholar 

  84. Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP, Reis P, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE. Iijima KM, editor. Public Library of Science. 2013;8(8):e72301.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. BioMed Central. 2014;6(4):44.

    Article  CAS  Google Scholar 

  86. Troquier L, Caillierez M, Burnouf S, Fernandez-Gomez FJ, Grosjean MJ, Zommer N, et al. Targeting phospho-Ser422 by active tau immunotherapy in the THY-Tau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res. 2012;9(4):397–405.

    Google Scholar 

  87. Bournazos S, Ravetch JV. Fcγ receptor function and the design of vaccination strategies. Immunity. 2017;47(2):224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Albert M, Mairet-Coello G, Danis C, Lieger S, Caillierez R, Carrier S, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–1750

    Google Scholar 

  89. Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36(2):693–709.

    Article  CAS  PubMed  Google Scholar 

  90. Qureshi IA, Tirucherai G, Ahlijanian MK, Kolaitis G, Bechtold C, Grundman M. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (NY). 2018;4:746–55.

    Google Scholar 

  91. Courade J-P, Angers R, Mairet-Coello G, Pacico N, Tyson K, Lightwood D, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. Springer Berlin Heidelberg. 2018;136(5):729–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levenson JM, Schroeter S, Carroll JC, Cullen V, Asp E, Proschitsky M, et al. NPT088 reduces both amyloid-β and tau pathologies in transgenic mice. Alzheimers Dement (NY). 2016;2(3):141–55.

    Google Scholar 

  93. Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, et al. Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like tau pathology. Neurobiol Dis. 2011;43(2):486–94.

    Article  CAS  PubMed  Google Scholar 

  94. Laurent C, Burnouf S, Ferry B, Batalha VL, Coelho JE, Baqi Y, et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiat.. Nature Publishing Group. 2016;21(1):97–107.

    Article  CAS  Google Scholar 

  95. Laurent C, Eddarkaoui S, Derisbourg M, Leboucher A, Demeyer D, Carrier S, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol Aging. 2014;35(9):2079–90.

    Article  CAS  PubMed  Google Scholar 

  96. Galasso A, Cameron CS, Frenguelli BG, Moffat KG. An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biol Open. The Company of Biologists Ltd. 2017;6(10):1434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mitra S, Behbahani H, Eriksdotter M. Innovative therapy for Alzheimer’s disease-with focus on biodelivery of NGF. Front Neurosci. 2019;13:38.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Belarbi K, Burnouf S, Fernandez-Gomez FJ, Desmercieres J, Troquier L, Brouillette J, et al. Loss of medial septum cholinergic neurons in THY-Tau22 mouse model: what links with tau pathology? Curr Alzheimer Res. 2011;8(6):633–8.

    Article  CAS  PubMed  Google Scholar 

  99. Burlot M-A, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin J, et al. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like tau pathology. Human Mol Gene. 2015;24(21):5965–76.

    Article  CAS  Google Scholar 

  100. Braudeau J, Burlot M-A, Ayciriex S, Varin J, Gautier B, Djelti F, et al. Cholesterol and tau pathology: consequences of AAV-mediated CHOLESTEROL-24-hydroxylase overexpression in the thy-TAU22 mouse. Alzheimer’s & Dementia. Elsevier; 2014;10(4):P237.

    Google Scholar 

  101. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis. la Monte de S, editor. IOS Press. 2017;57(4):1325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Syeda T, Sanchez-Tapia M, Pinedo-Vargas L, Granados O, Cuervo-Zanatta D, Rojas-Santiago E, et al. Bioactive food abates metabolic and synaptic alterations by modulation of gut microbiota in a mouse model of alzheimer’s disease. J Alzheimers Dis. Albensi B, editor. IOS Press. 2018;66(4):1657–82.

    Article  PubMed  Google Scholar 

  103. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. American Association for the Advancement of Science. 2019;5(1):eaau3333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ball MJ, Lukiw WJ, Kammerman EM, Hill JM. Intracerebral propagation of Alzheimer’s disease: strengthening evidence of a herpes simplex virus etiology. Alzheimers Dement. 2013;9(2):169–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank all members of the Alzheimer & Tauopathies team for their support and discussion on the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Buee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buee, L. (2019). Dementia Therapy Targeting Tau. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_30

Download citation

Publish with us

Policies and ethics