Skip to main content

Exploring the Role of Tau Proteins in Alzheimer’s Disease from Typical Functioning MAPs to Aberrant Fibrillary Deposits in the Brain

  • Chapter
  • First Online:
Deciphering Drug Targets for Alzheimer’s Disease
  • 209 Accesses

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and cognitive function deficits in affected individuals, eventually affecting their motor functions. Among many other neurodegenerative conditions, AD is the leading cause of disability and dependency in the elderly population. The two principal essential markers of AD pathology include abnormal deposition neurofibrillary tangles (tau proteins) and amyloid plaques (Aβ peptides). Thus, tau proteins are of critical interest as the prominent indicator of disease mechanisms. Understanding the normal biological functions of tau and the role of PTMs (posttranslational modifications) is essential. In AD, the alteration of physiological tau proteins into aberrant misfolded proteins, such as oligomers, PHFs, and NFTs, due to the PTMs, leads to its interneuronal propagation along with Aβ plaques. It results in synapse loss, neurotoxicity, and neurodegeneration. Since extensive research has shown that Aβ-targeting medicines are toxic and less effective at attenuating AD pathology, tau-directed therapeutics have gained significant remedial focus in recent decades. Although current tau-related therapies provide transient symptomatic comfort, they do not treat the illness overall. Hence, modern research has focused on analyzing tau protein’s mechanisms and complexities to produce effective disease-modifying drugs. This review presents a thorough understanding of tau proteins in AD pathogenesis, their origin, and their essential roles in physiological conditions. Additionally, various effective therapeutics targeting tau-associated PTMs such as hyperphosphorylation, acetylation, and methylation are described. Moreover, novel therapeutic strategies such as immunotherapy and oligonucleotide therapy have been mentioned. The clinical trials surrounding tau-related medications have also been highlighted.

Graphical Abstract

The graphical abstract illustrates the pathological transformation of tau proteins to interneuronal fibrillary tangles (NFTs), due to posttranslational modifications, seen in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD :

Alzheimer’s disease

AIEC:

Anterolateral entorhinal cortex

APP :

Amyloid precursor protein

Aβ peptide:

Amyloid-beta peptide

CDK-5:

Cyclin-dependent kinases-5

CK1:

Casein kinase 1

COX:

Cyclooxygenase

CSF:

Cerebrospinal fluid

GSK-3:

Glycogen synthase kinase 3

HMTM:

Hydromethylthionine mesylate

JNK :

c-Jun N-terminal kinase

MAP:

Microtubule-associated proteins

MAP3K:

Mitogen-activated protein kinase

MAPT :

Microtubule-associated protein tau

MT:

Microtubules

MTBR:

Microtubule-binding region

NFT :

Neurofibrillary tangles

PHFs:

Paired helical filaments

PI3Ks:

Phosphoinositide 3-kinases

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PMEC:

Posteromedial subregion

PP2A:

Protein phosphatase 2A

PTM:

Posttranslational modifications

SMAP:

Synthetic tricyclic sulfonamide PP2A activators

TG mice:

Transgenic mice

References

  • Alda M, McKinnon M, Blagdon R, Garnham J, MacLellan S, O’Donovan C, Hajek T, Nair C, Dursun S, MacQueen G (2017) Methylene blue treatment for residual symptoms of bipolar disorder: randomised crossover study. Br J Psychiatry 210(1):54–60

    Article  PubMed  Google Scholar 

  • Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5(4):375–384

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322(16):1589–1599

    Article  PubMed  PubMed Central  Google Scholar 

  • Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  CAS  PubMed  Google Scholar 

  • Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23(4):213–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Berron D, Neumann K, Maass A, Schütze H, Fliessbach K, Kiven V, Jessen F, Sauvage M, Kumaran D, Düzel E (2017) Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiol Aging 65:86–97

    Article  Google Scholar 

  • Bhat RV, Leonov S, Luthman J, Scott CW, Lee C (2002) Interactions between GSK3beta and caspase signalling pathways during NGF deprivation induced cell death. J Alzheimers Dis 4(4):291–301

    Article  CAS  PubMed  Google Scholar 

  • Bijari N, Balalaie S, Akbari V, Golmohammadi F, Moradi S, Adibi H, Khodarahmi R (2018) Effective suppression of the modified PHF6 peptide/1N4R tau amyloid aggregation by intact curcumin, not its degradation products: another evidence for the pigment as preventive/therapeutic “functional food”. Int J Biol Macromol 120(Pt A):1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68(4):325–332

    Article  CAS  PubMed  Google Scholar 

  • Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunden KR et al (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30:13861–13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamo A, Oddo S, Tran LX, LaFerla FM (2007) Lithium reduces tau phosphorylation but not a beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 170:1669–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cechetto DF, Hachinski V, Whitehead SN (2008) Vascular risk factors and Alzheimer’s disease. Expert Rev Neurother 8(5):743–750

    Article  PubMed  Google Scholar 

  • Cho JH, Johnson GV (2004) Glycogen synthase kinase. 3 beta induces caspase-cleaved tau aggregation in situ. J Biol Chem 279:54716–54723

    Article  CAS  PubMed  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225

    Article  CAS  PubMed  Google Scholar 

  • Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  Google Scholar 

  • Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137(Pt 10):2834–2846

    Article  PubMed  Google Scholar 

  • Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29(5):642–651

    Article  CAS  PubMed  Google Scholar 

  • Cunningham EL, McGuinness B, Herron B, Passmore AP (2015) Dementia. Ulster Med J 84(2):79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehmelt L, Halpain S (2004) The MAP2/tau family of microtubule-associated proteins. Genome Biol 6(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem 287(2):893–904

    Article  PubMed  Google Scholar 

  • Dong S, Zeng Q, Mitchell ES, Xiu J, Duan Y, Li C et al (2012) Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One 7(2):e31211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M, Huang L, Liu RT (2009) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30:986–995

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA, Schneider JE Jr, Dittmer DP (2004) Methylene blue photoinactivation of RNA viruses. Antivir Res 61(3):141–151

    Article  CAS  PubMed  Google Scholar 

  • Forlenza OV, De-Paula VJ, Diniz BS (2014) Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci 5:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis PT (2005) The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 10(11 Suppl 18):6–9

    Article  PubMed  Google Scholar 

  • Freedman RA, Bullitt E, Sun L, Gelman R, Harris G, Ligibel JA, Krop IE, Partridge AH, Eisenberg E, Winer EP, Lin NU (2011) A phase II study of sagopilone (ZK 219477; ZK-EPO) in patients with breast cancer and brain metastases. Clin Breast Cancer 11(6):376–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM (2005) AN1792(QS-21)-201 study team. Clinical effects of Abeta immunization (AN1792) in patients with AD in AN interrupted trial. Neurology 64(9):1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989:9

    Google Scholar 

  • Goedert M, Crowther RA, Garner CC (1991) Molecular characterization of microtubule- associated proteins tau and MAP2. Trends Neurosci 14:193–199

    Article  CAS  PubMed  Google Scholar 

  • Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98(4):993–1006

    Article  PubMed  Google Scholar 

  • Hall S et al (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69:1445–1452

    Article  PubMed  Google Scholar 

  • Hempen B, Brion JP (1996) Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55(9):964–972

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Cavanaugh JE, Kimelman D, Xia Z (2000) Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20(7):2567–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman DT, Lopez-Deber MP, Ndao DM et al (2011) Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem 286(16):13966–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6):1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S, Saitoh Y, Ishiguro K, Hoshino T, Imahori K (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci U S A 93(7):2719–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa M, Arai T, Masuda-Suzukake M, Nonaka T, Yamashita M, Akiyama H, Hasegawa M (2012) Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS One 7(12):e52389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem 121(2):179–188

    CAS  PubMed  Google Scholar 

  • Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72

    Article  CAS  PubMed  Google Scholar 

  • Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, Gilmour G (2019) Targeting the synapse in Alzheimer’s disease. Front Neurosci 13:735

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15(4):445–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Jhang KA, Park JS, Kim HS, Chong YH (2017) Resveratrol ameliorates tau hyperphosphorylation at ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem 65:9626–9634

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Barker HM, da Cruz e Silva EF, Mayer-Jaekel RE, Hemmings BA, Spurr NK, Sheer D, Cohen PT (1993) Localization of the genes encoding the catalytic subunits of protein phosphatase 2A to human chromosome bands 5q23→q31 and 8p12→p11.2, respectively. Cytogenet Cell Genet 63(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Jung NP, Jin SH (1996) Studies on the physiological and biochemical effect of Korean ginseng. Korean J Ginseng Sci 20:431–471

    CAS  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16:5583–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr KM, Agster KL, Furtak SC, Hippocampus BRD (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17(9):697–708

    Article  PubMed  Google Scholar 

  • Khalil HS, Mitev V, Vlaykova T, Cavicchi L, Zhelev N (2015) Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J Biotechnol 202:40–49

    Article  CAS  PubMed  Google Scholar 

  • Kirby LA, Schott JT, Noble BL, Mendez DC, Caseley PS, Peterson SC, Routledge TJ, Patel NV (2012) Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. PLoS One 7(6):e39329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Le Pichon CE, Adolfsson O, Gafner V, Pihlgren M, Lin H, Solanoy H, Brendza R, Ngu H, Foreman O, Chan R, Ernst JA, DiCara D, Hotzel I, Srinivasan K, Hansen DV, Atwal J, Lu Y, Bumbaca D, Pfeifer A, Watts RJ, Muhs A, Scearce-Levie K, Ayalon G (2016) Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep 16(6):1690–1700

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950

    Article  PubMed  Google Scholar 

  • Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT (2016) The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53(7):4328–4342

    Article  CAS  PubMed  Google Scholar 

  • Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20(1–2):27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E (1995) Tau domains, phosphorylation and interactions with microtubules. Neurobiol Aging 16:355–362; discussion 362–363

    Article  CAS  PubMed  Google Scholar 

  • May JM, Qu ZC, Cobb CE (2004) Reduction and uptake of methylene blue by human erythrocytes. Am J Physiol Cell Physiol 286(6):C1390–C1398

    Article  CAS  PubMed  Google Scholar 

  • Meraz-Rios MA, Lira-De Leon KI, Campos-Pena V, De Anda-Hernandez MA, Mena-Lopez R (2010) Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 112:1353–1367

    Article  CAS  PubMed  Google Scholar 

  • Min SW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min SW et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Intern Med 269(1):54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16(3):365–371; discussion 371-80

    Article  CAS  PubMed  Google Scholar 

  • Morris M et al (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai F, Ishiguro K, Sano Y, Fujita SC (2002) Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. J Neurochem 81(5):1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283(12):1571–1577

    Article  PubMed  Google Scholar 

  • Niikura T, Tajima H, Kita Y (2006) Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 4(2):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, Vince-Kazmerova Z, Katina S, Fialova L, Prcina M, Parrak V, Dal-Bianco P, Brunner M, Staffen W, Rainer M, Ondrus M, Ropele S, Smisek M, Sivak R, Winblad B, Novak M (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Novak P, Zilka N, Zilkova M, Kovacech B, Skrabana R, Ondrus M, Fialova L, Kontsekova E, Otto M, Novak M (2019) AADvac1, an active immunotherapy for Alzheimer’s disease and non- Alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alzheimers Dis 6(1):63–69

    CAS  PubMed  Google Scholar 

  • Nussbaum JM, Seward ME, Bloom GS (2013) Alzheimer disease: a tale of two prions. Prion 7(1):14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panza F et al (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. Biomed Res Int 2016:3245935

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Porquet D, Griñán-Ferré C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallàs M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajabian A, Rameshrad M, Hosseinzadeh H (2019) Therapeutic potential of Panax Ginseng and its constituents, Ginsenosides and Gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat 29:55–72

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar A, Jong BY, Ori-McKenney KM (2018) Remapping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 247:138–155

    Article  CAS  PubMed  Google Scholar 

  • Rane JS, Bhaumik P, Panda D (2017) Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J Alzheimers Dis 60:999–1014

    Article  CAS  PubMed  Google Scholar 

  • Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156(6):885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reagh ZM, Noche JA, Tustison NJ, Delisle D, Murray EA, Yassa MA (2018) Functional imbalance of anterolateral entorhinal cortex and hippocampal dentate/CA3 underlies age- related object pattern separation deficits. Neuron 97(5):1187–1198.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel G, Klein J, Niewiadomska G, Kondak C, Schwab K, Lauer D, Magbagbeolu M, Steczkowska M, Zadrozny M, Wydrych M, Cranston A, Melis V, Santos RX, Theuring F, Harrington CR, Wischik CM (2019) Mechanisms of anticholinesterase interference with tau aggregation inhibitor activity in a tau-transgenic mouse model. Curr Alzheimer Res 17(3):285–296

    Article  Google Scholar 

  • Sato S, Tatebayashi Y, Akagi T, Chui DH, Murayama M, Miyasaka T et al (2002) Aberrant tau phosphorylation by glycogen synthase kinase-3beta and JNK3 induces oligomeric tau fibrils in COS-7 cells. J Biol Chem 277:42060–42065

    Article  CAS  PubMed  Google Scholar 

  • Schelter BO, Shiells H, Baddeley TC, Rubino CM, Ganesan H, Hammel J, Vuksanovic V, Staff RT, Murray AD, Bracoud L, Riedel G, Gauthier S, Jia J, Bentham P, Kook K, Storey JMD, Harrington CR, Wischik CM (2019) Concentration-dependent activity of hydromethylthionine on cognitive decline and brain atrophy in mild to moderate Alzheimer’s disease. J Alzheimers Dis 72(3):931–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM et al (2017) Resveratrol induces dephosphorylation of tau by interfering with the MID1-PP2A complex. Sci Rep 7:13753

    Article  PubMed  PubMed Central  Google Scholar 

  • Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I, Agulló JM, Pérez M, Avila J, Guardia-Laguarta C, Clarimón J, Lleó A, Gómez-Isla T (2009) A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367

    Article  PubMed  Google Scholar 

  • Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L (2008) Biochemistry of tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5(2):207–224

    Article  CAS  PubMed  Google Scholar 

  • Shin SJ, Park YH, Jeon SG, Kim S, Nam Y, Oh SM, Lee YY, Moon M (2020) Red ginseng inhibits tau aggregation and promotes tau dissociation in vitro. Oxid Med Cell Longev 2020:7829842

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin MK, Vázquez-Rosa E et al (2021) Reducing acetylated tau is neuroprotective in brain injury. Cell 184(10):2715–2732.e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik C, Hof PR (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomol Ther 6(1):6

    Google Scholar 

  • Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Sontag JM et al (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27(11):2751–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stack C, Jainuddin S, Elipenahli C, Gerges M, Starkova N, Starkov AA, Jove M, Portero-Otin M, Launay N, Pujol A, Kaidery NA, Thomas B, Tampellini D, Beal MF, Dumont M (2014) Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 23:3716–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q (2022) Alzheimer’s disease: epidemiology and clinical progression. Neurol Ther 11(2):553–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150:989–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro K, Hasegawa M, Ihara Y, Iwatsubo T (1997) Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 8:2797–2801

    Article  CAS  PubMed  Google Scholar 

  • Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C et al (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 21:4094–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trzeciakiewicz H, Tseng JH, Wander CM, Madden V, Tripathy A, Yuan CX, Cohen TJ (2017) A dual pathogenic mechanism links tau acetylation to sporadic tauopathy. Sci Rep 7:44102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M (2006) Anticancer molecular mechanisms of resveratrol. Front Nutr 2016(3):8

    Google Scholar 

  • Vellas B, Black R, Thal LJ et al (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6(2):144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan GK, Shwartz D, Losev Y, Arad E, Shemesh C, Pichinuk E, Engel H, Raveh A, Jelinek R, Cooper I, Gosselet F, Gazit E, Segal D (2020) Purpurin modulates tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell Mol Life Sci 77(14):2795–2813

    Article  CAS  PubMed  Google Scholar 

  • von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000) Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proc Natl Acad Sci U S A 97:5129–5134

    Article  Google Scholar 

  • von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow E-M, Mandelkow EM (2001) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J Biol Chem 276:48165–48174

    Article  Google Scholar 

  • Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21

    Article  PubMed  Google Scholar 

  • Wang X-L, Xiong Y, Yang Y et al (2015) A novel tacrine-dihydropyridine hybrid (−) SCR1693 induces tau dephosphorylation and inhibits Aβ generation in cells. Eur J Pharmacol 754:134–139

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Zhang HL, Wang XC, Xie JZ, An DD, Wan L, Wang JZ, Zeng Y, Shu XJ, Westermarck J, Lu YM, Ohlmeyer M, Liu R (2020) Direct activation of protein phosphatase 2A (PP2A) by tricyclic sulfonamides ameliorates Alzheimer’s disease pathogenesis in cell and animal models. Neurotherapeutics 17(3):1087–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wischik CM, Bentham P, Gauthier S, Miller S, Kook K, Schelter BO (2022) Oral tau aggregation inhibitor for Alzheimer’s disease: design, progress and basis for selection of the 16 mg/day dose in a phase 3, randomized, placebo-controlled trial of hydromethylthionine mesylate. J Prev Alzheimers Dis 9(4):780–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia N, Daiber A, Förstermann U, Li H (2017) Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 174(12):1633–1646

    Article  CAS  PubMed  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX, Ballatore C, Smith AB, Lee VM, Brunden KR (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW, Bode AM, Dong Z (2008) Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 47(10):797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

All the schematic diagrams were made using Biorender.com software.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval: Not applicable.

Consent to Participate: Yes.

Consent for Publication: Yes.

Availability of Data and Materials: Not applicable.

Competing Interests: None.

Funding: None.

Authors’ Contributions: All authors contribute to the study conception and design.

Acknowledgements: The authors acknowledge support from the Principal of Poona College of Pharmacy, Pune.

Disclosure of Potential Conflicts of Interest: Not applicable.

Research Involving Human Participants and/or Animals: Not applicable.

Informed Consent: Not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shareena, G., Kumar, D. (2023). Exploring the Role of Tau Proteins in Alzheimer’s Disease from Typical Functioning MAPs to Aberrant Fibrillary Deposits in the Brain. In: Kumar, D., Patil, V.M., Wu, D., Thorat, N. (eds) Deciphering Drug Targets for Alzheimer’s Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-2657-2_14

Download citation

Publish with us

Policies and ethics