Skip to main content

Crop Wild Relatives: An Underutilized Genetic Resource for Improving Agricultural Productivity and Food Security

  • Chapter
  • First Online:
Agricultural Research for Sustainable Food Systems in Sri Lanka

Abstract

Growth in global food demand, depleting natural resources, and the potential impacts of climate change have created an increased need to search for strategies to combat with. So far efforts have been made to increase the crop productivity and input use efficiency mainly through agronomic means which may not be sufficient to meet the future food production challenges. To deliver higher productivity in agriculture and to secure food diversity, effective crop improvement programs are vital to develop new crop varieties, which are not only resilient to biotic and abiotic stresses with higher yields and enhanced quality but also to be able to thrive under anticipating low-input farming environments. Since the genetic variability used so far has limited applications for the issues confronted with productivity, resilience, resistance, and food quality, breeders are now in the quest of seeking new genetic diversity to add new traits necessary to face future challenges. One such untapped genetic diversity exists with the close relatives of domesticated crop plants, crop wild relatives (CWR), those which collectively constitute an enormous reservoir of genetic diversity which can be utilized to produce new crop varieties that withstand adverse impacts of climate change, scarcity of water and other inputs, and new pests and diseases and to add diversity to the food basket. These genetic resources will help to enhance the agricultural production and sustaining productivity while ensuring food security, in the context of future challenges in food production. Transferring such traits of interest from wild species into crop backgrounds is time-consuming and requires significant funding and access to advanced technologies. Even though novel breeding techniques are available, instances of utilization of CWR to develop new varieties are scarcely reported in Sri Lanka. A holistic approach is needed to make use of CWR in developing diverse, resilient, and resource-efficient crop varieties that can contribute to a more sustainable and productive agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhayapala KMRD, De Costa WAJM, Fonseka RM, Prasannath K, De Costa DM, Suriyagoda LDB, Abeythilakeratne PD, Nugaliyadde MM (2014) A response of potato (Solanum tuberosum L.) to increasing growing season temperature under different soil management and crop protection regimes in the Upcountry of Sri Lanka. J Trop Agric Res 25(4):555–569

    Article  Google Scholar 

  • Abhayapala KMRD, De Costa WAJM, Malaviarachchi MAPWK, Kumara JBDAP, Suriyagoda LDB, Fonseka RM (2018) Exploitation of differential temperature-sensitivities of crops for the improved resilience of tropical smallholder cropping systems to climate change: a case study with temperature responses of tomato and chilli. J Agric Ecosyst Environ 261:103–114

    Article  Google Scholar 

  • https://www.cwrdiversity.org/partnership/eggplant-pre-breeding-project/. Accessed on 1 Aug 2018

  • https://www.bioversityinternational.org/2.crop_wild_relatives_project_countries.pdf. Accessed on 25 July 2018

  • http://www.cropwildrelatives.org/cwr/importance/. Accessed on 25 July 2018

  • https://www.doa.gov.lk/index.php/en/ct-menu-item-9/cwr-project. Accessed on 25 July 2018

  • https://foodtank.com/news/2017/11/crop-trust-wild-relatives/. Accessed on 29 March 2020

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100(5):1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Bains NS, Singh S, Dhillon BS (2012) Enhanced utilization of plant genetic resources in crop improvement programmes. Indian J Plant Genet Resour 25(1):52–62

    Google Scholar 

  • Barclay A (2004) Feral play: crop scientists use wide crosses to breed into cultivated rice varieties the hardiness of their wild kin. Rice Today:14–19

    Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

    Article  CAS  PubMed  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238

    Article  PubMed  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_7

    Chapter  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Brush SB (1991) A farmer-based approach to conserving crop germplasm. Econ Bot 45:153–165

    Article  Google Scholar 

  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022. https://doi.org/10.1038/nplants.2016.22

    Article  PubMed  Google Scholar 

  • CBD (1992) Convention on biological diversity: text and annexes. Secretariat of the Convention on Biological Diversity/Cornell University, Montreal/Urbana, pp 1–34

    Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot Preview

    Google Scholar 

  • Choudhary M, Singh V, Muthusamy V, Wani S (2017) Harnessing crop wild relatives for crop improvement. Int J Life Sci 6:73. https://doi.org/10.5958/2319-1198.2017.00009.4

    Article  Google Scholar 

  • Commission on Genetic resources for Food (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Org. https://scholar.google.com/scholar?cluter=1278742458347738512&hl=en&as_sdt=2005&sciodt=0,5

  • Crute IR (1992) From breeding to cloning (and back again?): a case study with lettuce downy mildew. Annu Rev Phytopathol 30:485–506

    Article  CAS  PubMed  Google Scholar 

  • Dar WD, Gowda CLL (2013) Declining agricultural productivity and global food security. J Crop Improv 27(2):242–254

    Article  Google Scholar 

  • Dempewolf H, Hodgkins KA, Rummell SE, Ellstrand NC, Rieseberg LH (2012) Reproductive isolation during domestication. Plant Cell 24:2710–2717. https://doi.org/10.1105/tpc.112.100115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst 38:369–377

    Article  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070. https://doi.org/10.2135/cropsci2016.10.0885

    Article  Google Scholar 

  • Diez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Vegetables II. Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 249–323

    Google Scholar 

  • Dissanayake DRRW, Jayasinghe-Mudalige UK, Gunawardena UADP, Randeni RPLC, Udugama JMM (2009) Economic Valuation of genetic resources of wild relatives: assessing the preferences of adjacent community for in situ conservation of Oryza granulata in Wavulpane area. In: Proceedings of 9th Agricultural Research Symposium, pp 76–81

    Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–280

    Article  CAS  Google Scholar 

  • Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461. https://doi.org/10.3389/fpls.2017.01461

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckstein D, Künzel V, Schäfer L (2018) Global climate risk index; Who suffers most from extreme weather events? Weather-related loss events in 2016 and 1997 to 2016, Chapman-Rose J, Baum D, Fuhrmann H, Kier G (eds). GERMANWATCH. http://germanwatch.org/en/cri. Accessed on 05/08/2018

  • Eenink AH, Groenwold R, Dieleman FL (1982) Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribisnigri 1 transfer of resistance from L. virosa to L. sativa by inter-specific crosses and selection of resistant breeding lines. Euphytica 31:291–300

    Article  Google Scholar 

  • Fallik E, Ilic Z (2014) Grafted vegetables – The influence of rootstock and scion on postharvest quality. Folia Hort 26(2):79–90. https://doi.org/10.2478/fhort-2014-0008

    Article  Google Scholar 

  • FAO (2007) Status of plant genetic resources for food and agriculture. Country reports of Bangladesh, India, Nepal, Pakistan and Sri Lanka

    Google Scholar 

  • Fielder H, Brotherton P, Hosking J, Hopkins JJ, Ford-Lloyd B, Maxted N (2015) Enhancing the conservation of crop wild relatives in England. PLoS ONE 10(6):e0130804. https://doi.org/10.1371/journal.pone.0130804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fita A, Rodriguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseka HH, Fonseka RM (2010) Problems and prospects of using CWR in National Crop Improvement Programmes. In: Marambe B, Wijesekera A (eds) Conservation and utilization of crop wild relatives of Sri Lanka. Book of Abstracts. Department of Agriculture and Ministry of Environment and Natural Resources, p 34

    Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123

    Article  Google Scholar 

  • Ford-Lloyd B, Schmidt M, Armstrong SJ, Barazani O, Engels J, Hadas R, Hammer K, Kell SP, Kang D, Khoshbakht K, Li Y, Long C, Lu B-R, Ma K, Nguyen VT, Qiu L, Ge S, Wei W, Zhang Z, Maxted N (2011) Crop wild relatives – undervalued, underutilized and under threat? Bioscience 61:559–565

    Article  Google Scholar 

  • Frison E, Atta-Krah K (2008) Foreword. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo E, Turok J (eds) Crop wild relatives, conservation and use. CAB International, Wallingford, pp xxiii–xxv

    Google Scholar 

  • Garrett KA, Forbes GA, Savary S, Skelsey P, Sparks AH, Valdivia C (2011) Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol 60(1):15–30

    Article  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gunarathne LHP (2010) Socio-economic aspects of conservation and utilization of crop wild relatives (Related to the CWR in the Central Region). Draft technical report. Unpublished

    Google Scholar 

  • Gur A, Zamir RD (2004) Unused natural variation can lift yield barriers in plant breeding. PLOS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109(37):E2415–E2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman SM, Dhillon BS, Saxena S, Upadhyaya MP, Joshi BK, Ahmad Z, Qayyum A, Ghafoor A, Jayasuriya AHM, Rajapakse RMT (2003) Plant genetic resources in SAARC countries: their conservation and management. SAARC Agricultural Information Centre, Dhaka

    Google Scholar 

  • Hemachandra PV (2008) Collection of wild rice germplasm in Sri Lanka. In: Proceedings of the 64th Annual sessions, Sri Lankan Association of Advancement of Science

    Google Scholar 

  • Henry RJ, Nevo E (2014) Exploring natural selection to guide breeding for agriculture. Plant Biotechnol 12:655–662

    Article  Google Scholar 

  • Hitinayake HMC, Sumanarathne JP, Abesekara WADS, Madushika KGN, Danushka WM, Sawarnalatha KG (2017) Yield improvement of spine gourd through gynomonoecious hybrid (Momordica subangulata sub spp. renigera x Momordica dioica Roxb. ex). Ann Dep Agric 19:71–78

    Google Scholar 

  • Hodgkin T, Hajjar R (2008) Using crop wild relatives for crop improvement: trends and perspectives ves. In: Maxted N, Ford- Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (eds) Crop wild relative conservation and use. CAB International, Wallingford, pp 535–548

    Google Scholar 

  • Hoisington D, Skovmand B, Taba S (1999) Plant genetic resources: what can they contribute towards increased crop productivity? PNAS 96:5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins J, Maxted N (2011) Crop wild relatives: plant conservation for food security. Natural England research report NERR037. ISSN 1754-1956

    Google Scholar 

  • Hoyt E, Brown S (1988) Conserving the wild relatives of crops. IBPGR, IUCN, WWF, Rome/Gland

    Google Scholar 

  • Hunter D, Guarino L, Khoury C, Dempewolf H (2012) A community divided: lessons from the conservation of crop wild relatives around the world. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 298–304

    Chapter  Google Scholar 

  • Hurtado M, Vilanova S, Plazas M, Gramazio P, Fonseka HH, Fonseka RM, Prohens J (2012) Diversity and relationships of eggplants from three geographically distant secondary centers of diversity. PLoS One 7(7):e41748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Nat Acad Sci U S A 103:16666–16671

    Article  CAS  Google Scholar 

  • International Plant Genetic Resources Institute and the United Nations Environment Programme (IPGRI & UNEP): A Joint Press Release (2004). Every crop needs its wild relatives. http://www.umsl.edu/~naumannj/Geography%201001%20articles/ch%208%20agricultural%20geography/Every%20crop%20needs%20its%20wild%20relatives.doc

  • Jarvis A, Lane A, Hijmans R (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23

    Article  Google Scholar 

  • Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, Nguyen HT (2016) Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 242:342–350

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Prohens J, Vilanova S, Gramazio P, Plazas M (2015) Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization inbreeding. Front Plant Sci 7:677

    Google Scholar 

  • Kilian B, Martin W, Salamini F (2010) Genetic diversity, evolution and domestication of wheat and barley in the Fertile Crescent. In: Glaubrecht M (ed) Evolution in action. Springer, Berlin/Heidelberg, pp 137–166. https://doi.org/10.1007/978-3-642-12425-9_8

    Chapter  Google Scholar 

  • Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS One 8:e57039. https://doi.org/10.1371/journal.pone.0057039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs MIP, Howes NK, Clarke JM, Leisle D (1998) Quality characteristics of durum wheat lines deriving high protein from Triticum dicoccoides (6b) substitution. J Cereal Sci 27:47–51

    Article  CAS  Google Scholar 

  • Kumarathilake DMHC, Senanayake SGJN, Wijesekara GAW, Wijesundara DSA, Ranawaka RAAK (2010) Extinction risk assessment at the species level: national red list status of endemic wild cinnamon species in Sri Lanka. Trop Agric Res 21:247–257. https://doi.org/10.4038/tar.v21i3.3298

    Article  Google Scholar 

  • Kush GS, Virk PS (2005) IR varieties and their impact. IRRI Publication

    Google Scholar 

  • Lindgren E, Albihn A, Andersson Y (2011) Climate change, water related health impacts, and adaptation: highlights from the Swedish Government’s commission on climate and vulnerability. In: Ford JD, Berrang-Ford L (eds) Climate change adaptation in developed nations – from theory to practice, vol 42. Springer, Dordrecht, pp 177–188

    Chapter  Google Scholar 

  • Liyanage ASU (2009) Integrated in-situ system approaches for conservation of wild rice. The International Symposium on Wild Rice, Thailand

    Google Scholar 

  • Liyanage ASU (2010) Eco-geographic survey of crop wild relatives. Plant Genetic Resources Centre, Gannoruwa

    Google Scholar 

  • Liyanage ASU, Wasala WMD, Edirisinghe DK, Wijesekera A (2006) Eco-geographic survey of wild species of Vigna in Sri Lanka. Eleventh annual symposium proceedings Part 1. International Forestry and Environment Symposium, Department of forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Lynch R (1990) Resistance in peanut to major arthropod pests. Fla Entomol 73:360–363

    Article  Google Scholar 

  • Madurangi SAP, Samarasinghe WLG, Senanayake SGJN, Hemachandra PV, Ratnasekera D (2011) Resistance of Oryza nivara and Oryza eichingeri derived lines to brown plant hopper, Nilaparvata lugens. J Natl Sci Found Sri Lanka 39(2):175–181

    Article  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886. https://doi.org/10.3389/fpls.2018.00886

    Article  PubMed  PubMed Central  Google Scholar 

  • Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136:300–318

    Article  CAS  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman & Hall, London

    Chapter  Google Scholar 

  • Maxted N, Kell SP, Ford-Lloyd BV (2008) Crop wild relatives conservation and use: establishing the context. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI Publishing, Wallingford, pp 3–30

    Google Scholar 

  • Maxted N, Kell S, Ford-Lloyd B, Dulloo E, Toledo A (2012) Towards the systematic conservation of global crop wild relative diversity. Crop Sci 52:1–12

    Article  Google Scholar 

  • Maxted N, Kell S, Brehm JM, Jackson M, Ford-Lloyd B, Parry M (2013) Crop wild relatives and climate change. In: Jackson M, Ford-Lloyd BV, Parry M (eds) Plant genetic resources and climate change. CABI, Wallingford

    Google Scholar 

  • Miraglia M, Marvin HJ, Kleter GA, Battilani P, Brera C, Coni E (2009) Climate change and food safety: an emerging issue with special focus on Europe. Food Chem Toxicol 47(5):1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Mutegi E, Snow AA, Mathu R, Pasquest R, Ponniah H, Daunay M, Davidar P (2015) Genetic diversity and population structure of wild/weedy eggplant (Solanum insanum L., Solanaceae) in Southern India: implications for conservation. Am J Bot 102(1):140–148

    Article  PubMed  Google Scholar 

  • Nayyar D, Dreier L (2012) Putting the new vision for agriculture into action: a transformation is happening. Word Economic Forum. http://www.weforum.org/reports/putting-new-visionagriculture-action-transformation-happening. Accessed on 5 May 2018

  • Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Nguyen B, Brar D, Bui B, Nguyen T, Nguyen H (2003) Identification on and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff, into Indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    Article  CAS  PubMed  Google Scholar 

  • Norton SL, Khoury CK, Sosa Chrystian C, Castañeda-Álvarez Nora P, Achicanoy Harold A, Steven S (2017) Priorities for enhancing the ex situ conservation and use of Australian crop wild relatives. Aust J Bot 65:638–645. https://doi.org/10.1071/BT16236

    Article  Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE (2007) Climate change: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Perera KDA, Warshamana IK (1987) Graft compatibility, wilt resistance and graft induced changes on S. melongena by two wild species, S. torvum and S. indicum. Trop Agric 143:27–35

    Google Scholar 

  • Placido DF, Campbell MT, Folsom JJ, Cui XP, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plazas M, Vilanova S, Gramazio P, Rodrguez-Burruezo A, Fita A, Herraiz Instituto FJ, Rajakapasha R, Fonseka R, Niran N, Fonseka H, Kouassi B, Kouassi A, Kouassi A, Prohens J (2016) Interspecific hybridization between eggplant and wild relatives from different gene pools. J Am Soc Hortic Sci 141(1):34–44

    Article  Google Scholar 

  • Plucknett D, Smith N, Williams J, Murthi AYN (1987) Gene banks and the world’s food. Princeton University Press, Princeton

    Book  Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (2009) Genes from the wild: using wild genetic resources for food and raw materials. Earthscan Publications Limited, London

    Google Scholar 

  • Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, Gramazio P, Stommel JR (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena L, and its wild ancestor (S. incanum). Ann Appl Biol 162:242–257. https://doi.org/10.1111/aab.12017

    Article  CAS  Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158. https://doi.org/10.1007/s10681-017-1938-9

    Article  Google Scholar 

  • Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Rashid MA, Hossain MM, Salam MA, Masum ASMH (2002) Grafting Compatibility of Cultivated eggplant Varieties with Wild Solanum Species. Pak J Biol Sci 5:755–757. https://doi.org/10.3923/pjbs.2002.755.757

    Article  Google Scholar 

  • Ranil RHG, Niran HML, Plazas M, Fonseka RM, Fonseka HH, Vilanova S, Andújar I, Gramazio P, Fita A, Prohens J (2015) Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci Hortic 193:174–181. https://doi.org/10.1016/j.scienta.2015.07.030

    Article  Google Scholar 

  • Ranil RHG, Prohens J, Aubriot X, Niran HML, Plazas M, Fonseka RM, Vilanova S, Fonseka HH, Gramazio P, Knapp S (2017) Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet. Resour. Crop Evol 64:1707–1722

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38

    Article  Google Scholar 

  • Robertson L, Labate J (2007) Genetic resources of tomato. In: Razdan MK, Mattoo AK (eds) Genetic Improvement of Solanaceous Crops, 2, Tomato. Science Publishers, Enfield

    Google Scholar 

  • Rouphael Y, Schwarz D, Krumbein A, Colla G (2010) Impact of grafting on product quality of fruit vegetables. Sci Hort 127:172–179

    Article  Google Scholar 

  • Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA, Ort DR, Bernacchi CJ (2013) Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162(1):410–423. https://doi.org/10.1104/pp.112.211938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarajeewa PK, Attanayake P, Gamage NST (1998) Interspecific crosses between A. esculentus L. and A. angulosus L. Trop Agric 152:45–51

    Google Scholar 

  • Samarasinghe WLG, Liyanage ASU, Jayaweera SLD (2009) Assessment of the threatened status of crop wild relatives of banana, rice and vigna in Sri Lanka. Ann Sri Lanka Dep Agric 11:121–130

    Google Scholar 

  • Schneider A, Molnar I, Molnar-Lang M (2008) Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Sedivy EJ, Faqiang Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol 214(2):539–553. https://doi.org/10.1111/nph.14418

    Article  PubMed  Google Scholar 

  • Sharma H (2009) Biotechnological approaches for pest management and ecological sustainability. CRC Press, New York

    Google Scholar 

  • Singh B, Sanwal SK, Rai M, Rai AB (2009) Sources of biotic stress resistance in vegetable crops: a review. Veg Sci 36(2):133–146

    Google Scholar 

  • Spillman A (2013) Calcium-rich potatoes: it’s in their genes. Agric Res Washington 51(3):18–19

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066. https://doi.org/10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Thrupp LA (2000) Linking agricultural biodiversity and food security: the valuable role of agro biodiversity for sustainable agriculture. Int Aff 76:283–297

    Article  Google Scholar 

  • Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193

    Article  Google Scholar 

  • Warschefsky E, Penmetsa R, Cook DR, von Wettberg EJ (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101(10):1791–1800. https://doi.org/10.3732/ajb.1400116

    Article  PubMed  Google Scholar 

  • Wijeratne M, Piyasiri KHKL (2016) Conservation of crop wild relatives: a Sri Lankan experience in community participation. Trop Agric Res Ext 18(2):87–93

    Article  Google Scholar 

  • Wijesekara A, Herath A, Illankoon J (2006) Base line study on public awareness on crop wild relatives. Ann Sri Lanka Dep Agric 8:251–262

    Google Scholar 

  • Wijesekera GAW (2006) Bringing crop relatives to the public. In: Crop wild relatives. Bioversity International, p 7

    Google Scholar 

  • Wijesundara S (2006) Spicy wild relatives get some respect. In: Raymond RD, Moore C (eds) Geneflow. Bioversity International, Rome, pp 26–28

    Google Scholar 

  • Wright SI, Vroh Bi I, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Xiao JH, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li JM, Yuan LP (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111. https://doi.org/10.1038/nbt.2050

    Article  CAS  PubMed  Google Scholar 

  • Yohannes H (2016) A review on relationship between climate change and agriculture. J Earth Sci Clim Change 7:335. https://doi.org/10.4172/2157-7617.1000335

    Article  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genetics 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fonseka, R.M., Fonseka, H.H.D., Abhyapala, K.M.R.D. (2020). Crop Wild Relatives: An Underutilized Genetic Resource for Improving Agricultural Productivity and Food Security. In: De Silva, R.P., Pushpakumara, G., Prasada, P., Weerahewa, J. (eds) Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer, Singapore. https://doi.org/10.1007/978-981-15-3673-1_2

Download citation

Publish with us

Policies and ethics