Skip to main content

Systemically Induced Resistance Against Maize Diseases by Trichoderma spp.

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Maize (Zea mays) is a vital crop for human food, animal feed, and biofuel generation. But production is altogether diminished because of several pathogens. Trichoderma species incorporates numerous imperative in farming and is used as biological control agents (BCAs). A group of elicitors produced by the Trichoderma hyphae are able to induce distinctive sorts of defensive signals inside the plants through activation of salicylic acid (SA), jasmonic acid (JA), brassinolide (BR), reactive oxygen species (ROS), and defense enzymes. Hyd1 and cellulase are the elicitors obtained from Trichoderma harzianum that were found to recognize root target proteins. Activation of these genes induces the plant to produce compounds associated with the reduction of pathogens invasion and improve the biochemical activities for the plant growth and development. The basic target of this chapter is to display the efficacy of Trichoderma on the systemically induced resistance against maize diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agostini RB, Postigo A, Rius SP, Rech GE, Campos-Bermudez VA, Vargas WA (2018) Long-lasting primed state in maize plants: salicylic acid and steroid signaling pathways as key players in the early activation of immune responses in silks. Mol Plant Microbe Interact 32:95–106

    Article  PubMed  Google Scholar 

  • Alexandru M, Lazăr D, Ene M, Şesan TE (2013) Influence of some Trichoderma species on photosynthesis intensity and pigments in tomatoes. Rom Biotech Lett 18:8499–8510

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195

    Chapter  Google Scholar 

  • Bisht S, Kumar P, Srinivasanraghavan A, Purohit J (2013) In vitro management of Curvularia leaf spot of maize using botanicals, essential oils, and bio-control agents. Bioscan Suppl Med Plants 8:731–733

    Google Scholar 

  • Błaszczyk L, Basińska-Barczak A, Ćwiek-Kupczyńska H, Gromadzka K, Popiel D, Stępień Ł (2017) Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species. J Appl Microbiol 66:85–100

    Google Scholar 

  • Chen J, Harman GE, Comis A, Cheng GW (2005) Proteins related to the biocontrol of Pythium damping-off in maize with Trichoderma harzianum Rifai. J Integr Plant Biol 47:988–997

    Article  CAS  Google Scholar 

  • Chen LL, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Dou K, Gao Y, Li Y (2014) Mechanism and application of Trichoderma spp in biological control of corn diseases. Mycosystema 33:1154–1167

    CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Ind J Microbiol 47:289–297

    Article  CAS  Google Scholar 

  • Contreras-Cornejo H, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics, and gene expression. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI International, Wallingford, pp 175–196

    Google Scholar 

  • Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant Microbe Interact 28:701–710

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Del-Val E, Macías-Rodríguez L, Alarcón A, González-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202

    Article  CAS  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Hasan A, Schoene J, Hoeglinger B, Walker F, Voegele RT (2018) Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum. Eur J Plant Pathol 150:91–103

    Article  CAS  Google Scholar 

  • Fan L, Fu K, Yu C, Li Y, Li Y, Chen J (2015) Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata. J Basic Microbiol 55:591–600

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2011) Multifunctional fungal symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • He A, Liu J, Wang XH, Zhang Q, Song W, Chen J (2018) Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J Integr Agric 17:60345–60347

    Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hua L-F, Zhi Y-H, Tao W-Y, Xiong-Mian P (2006) Research progress for maize Curvularia leaf spot disease. J Maize Sci 12:97–101

    Google Scholar 

  • Huang J, Zheng L, Hsiang T (2004) First report of leaf spot caused by Curvularia verruculosa on Cynodon sp. In Hubei, China. Plant Pathol 54(2):253

    Article  Google Scholar 

  • Huang CJ, Yang KH, Liu YH, Lin YJ, Chen CY (2010) Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann Appl Biol 157:45–53

    Article  Google Scholar 

  • Jirak-Peterson JC, Esker PD (2011) Tillage, crop rotation, and hybrid effects on residue and corn anthracnose occurrence in Wisconsin. Plant Dis 95:601–610

    Article  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 144:323–329

    Article  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:40

    Article  CAS  Google Scholar 

  • Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Medina A, Pozo MJ, Cammue BP, Vos CM (2016) Belowground defence strategies in plants: the plant–Trichoderma dialogue below ground defence strategies in plants. Springer, New York, NY, pp 301–327

    Book  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees S (2017) Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377

    Article  PubMed  CAS  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    Article  PubMed  CAS  Google Scholar 

  • Patiño B, Vázquez C, Manning JM, Roncero MIG, Córdoba-Cañero D, Di Pietro A, Martínez-del-Pozo Á (2018) Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int J Food Microbiol 283:45–51

    Article  PubMed  CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp ciceri in chickpea (Cicer arietinum L) under salt stress conditions. Archiv Phytopathol Plant Protect 46:1442–1467

    Article  CAS  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà T, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    Article  CAS  PubMed  Google Scholar 

  • Saba H, Vibhash D, Manisha M, Prashant K, Farhan H, Tauseef A (2012) Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3:524–531

    Article  Google Scholar 

  • Saldajeno MGB, Naznin HA, Elsharkawy MM, Shimizu M, Hyakumachi M (2014) Enhanced resistance of plants to disease using Trichoderma spp. In: Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 477–493

    Chapter  Google Scholar 

  • Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J (2016) Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6:35543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang Q-q, Wang M, Sun J, Gao J-x, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7:1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saravanakumar K, Dou K, Lu Z, Wang X, Li Y, Chen J (2018a) Enhanced biocontrol activity of cellulase from Trichoderma harzianum against Fusarium graminearum through activation of defense-related genes in maize. Physiol Mol Plant Pathol 103:130–136

    Article  CAS  Google Scholar 

  • Saravanakumar K, Wang S, Dou K, Lu Z, Chen J (2018b) Yeast two-hybrid and label-free proteomics based screening of maize root receptor to cellulase of Trichoderma harzianum. Physiol Mol Plant Pathol 104:86–94

    Article  CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L, Hafiz AH, Jun Z, Dandan Z, Daniel PJ, Xiaofeng D, Wei G (2019) A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. Int J Food Microbiol 291:72–78

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays. Mol Gen Genet 280:173

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Sun HQ, He ZD, Gao YF, Liu R (2009) The mechanisms of Trichoderma spp in inhibition to maize foliar pathogens. Jiangsu Agric Sci 3:105–107. (in Chinese)

    Google Scholar 

  • Tian Y, Tan Y, Liu N, Yan Z, Liao Y, Chen J, De Saeger S, Yang H, Zhang Q, Wu A (2016) Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins 8:335

    Article  PubMed Central  CAS  Google Scholar 

  • Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ (2014) Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett 36:2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo H, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Viterbo ADA, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Physiol Mol Plant Pathol 7:249–258

    Article  CAS  Google Scholar 

  • Woo S, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Liu X, Wang L, Selvaraj JN, Jin N, Wang Y, Zhao Y, Liu Y (2017) Distribution and variation of fungi and major mycotoxins in pre-and post-nature drying maize in North China Plain. Food Control 80:244–251

    Article  CAS  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Fan L, Wu Q, Fu K, Gao S, Wang M, Gao J, Li Y, Chen J (2014) Biological role of Trichoderma harzianum-derived Platelet-Activating Factor Acetylhydrolase (PAF-AH) on stress response and antagonism. PLoS One 9:e100367

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Dou K, Wang S, Wu Q, Ni M, Zhang T, Lu Z, Tang J, Chen J (2019) Elicitor hydrophobin Hyd1 interacts with Ubiquilin1-like to induce maize systemic resistance. J Integr Plant Biol. https://doi.org/10.1111/jipb.12796

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The review covers research achievements supported by the grant from the National Key Projects (2017YFD0200403; 2017YFD0200901), National Nature Science Foundation (31872015, 31672072), and Chinese Agriculture Research System CARS-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Vallikkannu, M., Karuppiah, V. (2020). Systemically Induced Resistance Against Maize Diseases by Trichoderma spp.. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_6

Download citation

Publish with us

Policies and ethics