Skip to main content

Application of Nanoparticles in Agriculture as Fertilizers and Pesticides: Challenges and Opportunities

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

Sustainable management of ecosystem implies the exploitation of ecofriendly approaches in agriculture for production of crops. Since crop production is linearly determined by exhaustive application of fertilizers to increase soil fertility and pesticides to suppress yield limiting diseases, these processes at the same time result in ecosystem destabilization besides economic costs. Nanomaterials which are prepared by employing different techniques and which range in size between 1 and 100 nm, are comparatively safer and effective than conventional fertilizers. Their utilization as fertilizers and pesticides in agriculture for maximizing production of field crops is gaining popularity across the scientific community and further research in this area can enhance our knowledge about the emerging technology and its wide scale adoption. Different nanoparticles may exhibit potential divergent properties than traditional fertilizers and pesticides in terms of efficiency, costs, and environmental safety. In this chapter, nanoparticles and their possible utilization in agriculture for enhancing the production of crops are discussed with latest literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):0902

    Article  Google Scholar 

  • Abdel-Aziz H, Hasaneen MN, Omar A (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot 58(1):87–95

    Google Scholar 

  • Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Adisa IO, Reddy Pullagurala VL, Rawat S, Hernandez-Viezcas JA, Dimkpa CO, Elmer WH et al (2018) Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). J Agric Food Chem 66(24):5959–5970

    Article  CAS  PubMed  Google Scholar 

  • Alipour ZT (2016) The effect of phosphorus and sulfur nanofertilizers on the growth and nutrition of Ocimum basilicum in response to salt stress. J Chem Health Risks 6:125–131

    Google Scholar 

  • Almaraz M, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ (2018) Agriculture is a major source of NOx pollution in California. Sci Adv 4(1):eaao3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askary M, Amini F, Talebi SM, Gavari MS (2018) Effects of Fe-chelate and iron oxide nanoparticles on some of the physiological characteristics of alfalfa (Medicago sativa L.). environmental stresses in crop. Sciences 11(2):449–458

    Google Scholar 

  • Balaure PC, Gudovan D, Gudovan I (2017) Nanopesticides: a new paradigm in crop protection. In: New pesticides and soil sensors. Academic, London, pp 129–192

    Chapter  Google Scholar 

  • Benson T, Mogues T (2018) Constraints in the fertilizer supply chain: evidence for fertilizer policy development from three African countries. Food Sec 10(6):1479–1500

    Article  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham, pp 33–93

    Chapter  Google Scholar 

  • Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R et al (2018) Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng 6(11):14847–14856

    Article  CAS  Google Scholar 

  • Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9(7):3788–3799

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  • Chun SC, Chandrasekaran M (2019) Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol 125:948–954

    Article  CAS  PubMed  Google Scholar 

  • Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. npj Sci Food 2(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119

    Article  CAS  Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64

    Article  CAS  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 59–81

    Book  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66(26):6462–6473

    Article  CAS  PubMed  Google Scholar 

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Sustainable agriculture reviews. Springer, Cham, pp 307–330

    Chapter  Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    Article  CAS  Google Scholar 

  • Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C et al (2018) Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis 102(7):1394–1401

    Article  CAS  PubMed  Google Scholar 

  • Elshahawy I, Abouelnasr HM, Lashin SM, Darwesh OM (2018) First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. J Plant Protect Res 58(2):137–151

    CAS  Google Scholar 

  • Farahat GA (2018) Biosynthesis of nano zinc and using of some nanoparticles in reducing of Cercospora leaf spot disease of sugar beet in the field. Environ Biodivers Soil Security 2:103–117

    Article  Google Scholar 

  • Farhat MG, Haggag WM, Thabet MS, Mosa AA (2018) Efficacy of silicon and titanium nanoparticles biosynthesis by some antagonistic fungi and bacteria for controlling powdery mildew disease of wheat plants. Technology 14(5):661–674

    CAS  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Article  Google Scholar 

  • Ha NMC, Nguyen TH, Wang SL, Nguyen AD (2019) Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res Chem Intermed 45(1):51–63

    Article  CAS  Google Scholar 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1(1):6–11

    Article  Google Scholar 

  • Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M et al (2018) Engineered nanomaterials suppress turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano 5(7):1685–1693

    Article  CAS  Google Scholar 

  • Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H et al (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hasaneen MNAG, Abdel-aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res 4:68–76

    Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Academic, London, pp 193–225

    Chapter  Google Scholar 

  • Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2008) Introduction to nanoscience and nanotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Huang J, Xu CC, Ridoutt BG, Wang XC, Ren PA (2017) Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod 159:171–179

    Article  Google Scholar 

  • Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. R Soc Open Sci 5(8):171809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13(8):677

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

    Google Scholar 

  • Kanwar MK, Sun S, Chu X, Zhou J (2019) Impacts of metal and metal oxide nanoparticles on plant growth and productivity. In: Nanomaterials and plant potential. Springer, Cham, pp 379–392

    Chapter  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  CAS  Google Scholar 

  • León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F (2018) Design and production of nanofertilizers. In: Agricultural nanobiotechnology. Springer, Cham, pp 17–31

    Chapter  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42

    Article  CAS  Google Scholar 

  • Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using chaetomium globosum and its application to control fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol 11(6):702–708

    Article  Google Scholar 

  • Madou MJ (2011) Manufacturing techniques for microfabrication and nanotechnology, vol 2. CRC Press, Boca Raton

    Book  Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897

    Article  Google Scholar 

  • Mishra P, Balaji APB, Tyagi BK, Mukherjee A, Chandrasekaran N (2018) Nanopesticides: a boon towards the control of dreadful vectors of lymphatic filariasis. In: Lymphatic filariasis. Springer, Singapore, pp 247–257

    Chapter  Google Scholar 

  • Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19

    Article  CAS  PubMed  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229

    Google Scholar 

  • Oliver-Meseguer J, Boronat M, Vidal-Moya A, Concepción P, Rivero-Crespo MA, Leyva-Pérez A, Corma A (2018) Generation and reactivity of electron-rich carbenes on the surface of catalytic gold nanoparticles. J Am Chem Soc 140(9):3215–3218

    Article  CAS  PubMed  Google Scholar 

  • Palchoudhury S, Jungjohann KL, Weerasena L, Arabshahi A, Gharge U, Albattah A et al (2018) Enhanced legume root growth with pre-soaking in α-Fe 2 O 3 nanoparticle fertilizer. RSC Adv 8(43):24075–24083

    Article  CAS  Google Scholar 

  • Pan B, Lam SK, Mosier A, Luo Y, Chen D (2016) Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ 232:283–289

    Article  CAS  Google Scholar 

  • Pandey S, Giri K, Kumar R, Mishra G, Rishi RR (2018) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci India Sect B Biol Sci 88(4):1287–1308

    Article  CAS  Google Scholar 

  • Panwar J (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. In: International conference on environmental research and technology (ICERT)

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin D, Riggs BA (2013) Nanotechnology: a top–down approach. In: Encyclopedia of supramolecular chemistry-two-volume set (Print). CRC Press, Boca Raton, pp 1–9

    Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  CAS  PubMed  Google Scholar 

  • Reches Y, Thomson K, Helbing M, Kosson DS, Sanchez F (2018) Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3, and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures. Constr Build Mater 167:860–873

    Article  CAS  Google Scholar 

  • Rezaei-Chiyaneh E, Rahimi S, Rahimi A, Hadi H, Mahdavikia H (2018) Response of seed yield and essential oil of black cumin (Nigella sativa L.) affected as foliar spraying of nano-fertilizers. J Med Plants By-Prod 7(1):33–40

    Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Bhattacharya J (2015) Nanotechnology in industrial wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66(8):1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2

    Google Scholar 

  • Saxena A, Jain A, Upadhyay P, Gauba PG (2018) Applications of nanotechnology in agriculture. J Nanosci Nanoeng Appl 8(1):20–27

    CAS  Google Scholar 

  • Shuqin J, Fang Z (2018) Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J Resour Ecol 9(1):50–59

    Article  Google Scholar 

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK et al (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh MD, Gautam C, Patidar OP, Meena HM (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9(7):3831–3833

    Google Scholar 

  • Soejima T, Nishizawa K, Isoda R (2018) Monodisperse manganese oxide nanoparticles: synthesis, characterization, and chemical reactivity. J Colloid Interface Sci 510:272–279

    Article  CAS  PubMed  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Spruogis V, Jakienė E, Dautartė A, Zemeckis R (2018) The influence of bioorganic nanofertilizer on spring barley and oilseed rape productivity and economical effectiveness. Žemės ūkio mokslai 25(1):18–26

    Article  Google Scholar 

  • Subbenaik SC (2016) Physical and chemical nature of nanoparticles. In: Plant nanotechnology. Springer, Cham, pp 15–27

    Chapter  Google Scholar 

  • Taheri M, Qarache HA, Qarache AA, Yoosefi M (2016) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1(2):17–20

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671

    Article  CAS  PubMed  Google Scholar 

  • Varamin KJ, Fanoodi F, Sinaki JM, Rezvan S, Damavandi A (2018) Physiological response of sesame (Sesamum indicum L.) to application of chitosan and magnesium-nano fertilizers under irrigation cut-off in a sustainable agriculture system. Plant Physiol 9(1):2629–2639

    Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N et al (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Nguyen AD (2018) Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Res Chem Intermed 44(8):4889–4901

    Article  CAS  Google Scholar 

  • Xu L, Liang HW, Yang Y, Yu SH (2018) Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem Rev 118(7):3209–3250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehmanullah, Muhammad, Z., Inayat, N., Majeed, A. (2020). Application of Nanoparticles in Agriculture as Fertilizers and Pesticides: Challenges and Opportunities. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_17

Download citation

Publish with us

Policies and ethics