Skip to main content

Physical and Chemical Nature of Nanoparticles

  • Chapter
  • First Online:
Plant Nanotechnology

Abstract

Nanoparticles have some specific features, including physical properties, chemical properties, merits, and demerits, which have drawn much attention for their application in nanobiotechnology. This chapter explains the state of the art of different properties of nanoparticles and their potential beneficial roles. In addition, this chapter discusses on the research on nanoparticles essentiality for plants and describes the current knowledge concerning the key nanoparticles with important studies for their future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  • Ayyub P, Palkar V, Chattopadhyay S, Multani M (1995) Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 51:6135

    Article  CAS  Google Scholar 

  • Barreto Â, Luis LG, Girão AV, Trindade T, Soares AM, Oliveira M (2015) Behavior of colloidal gold nanoparticles in different ionic strength media. J Nanopart Res 17:1–13

    Article  CAS  Google Scholar 

  • Bhatia A, Shard P, Chopra D, Mishra T (2011) Chitosan nanoparticles as carrier of immunorestoratory plant extract: synthesis, characterization and immunorestoratory efficacy. Int J Drug Deliv 3:381–385

    CAS  Google Scholar 

  • Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y et al (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharmaceut 371:170–176

    Article  CAS  Google Scholar 

  • Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  PubMed  Google Scholar 

  • Cadden A (1987) Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52:1595–1599

    Article  Google Scholar 

  • Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6:373–387

    Article  CAS  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  PubMed  Google Scholar 

  • Cyrén B, Hermansson B (2012) Linear actuator assembly. U.S. Patent Application No. 14/359,669.

    Google Scholar 

  • Ehrman SH, Friedlander SK, Zachariah MR (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J Mater Res 14:4551–4561

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Planta 134:151–160

    Article  CAS  Google Scholar 

  • Ekambaram P, Sathali AAH, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2:80–102

    CAS  Google Scholar 

  • Endo M, Iijima S, Dresselhaus MS (eds) (2013) Carbon Nanotubes. Elsevier, Shinshu University, Japan

    Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Fernández‐García M, Rodriguez JA (2011) Metal oxide nanoparticles. Encycl Inorg Bioinorg Chem. Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain and Brookhaven National Laboratory, Upton, NY, USA

    Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Gilaki M (2010) Biosynthesis of silver nanoparticles using plant extracts. J Biol Sci 10:465–467

    Article  CAS  Google Scholar 

  • Greulich C, Kittler S, Epple M, Muhr G, Köller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch Surg 394:495–502

    Article  CAS  Google Scholar 

  • Hayat MA (1974) Principles and Techniques of Scanning Electron Microscopy. Biological Applications,vol 1. Van Nostrand Reinhold Company, New Jersey, USA

    Google Scholar 

  • Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharmaceut Res 12:255–264

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  Google Scholar 

  • Jain D, Daima HK, Kachhwaha S, Kothari S (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest J Nanomater Biostruct 4:557–563

    Google Scholar 

  • Jiang J, Chen D-R, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603

    Article  Google Scholar 

  • Jolivet J-P, Froidefond C, Pottier A, Chanéac C, Cassaignon S et al (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A Semi-Quant Model J Mater Chem 14:3281–3288

    CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepfer J, Mielke R, Wong M, Nealson K, Stucky G, Nadeau J (2003) Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microb 69:4205–4213

    Article  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium (Shewanella algae). J Biotechnol 128:648–653

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  PubMed  Google Scholar 

  • Lövestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N et al (2010) Considerations on a definition of Nanomaterial for regulatory purposes. Publications Office of the European Union

    Google Scholar 

  • Mahl D, Diendorf J, Meyer-Zaika W, Epple M (2011) Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf A Physicochem Eng Asp 377:386–392

    Article  CAS  Google Scholar 

  • Mainardes RM, Khalil NM, Gremião MPD (2010) Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. Int J Pharmaceut 395:266–271

    Article  CAS  Google Scholar 

  • Martínez A, Iglesias I, Lozano R, Teijón J, Blanco M (2011) Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohyd Polym 83:1311–1321

    Article  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y et al (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluores 21:2057–2068

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Orts-Gil G, Natte K, Drescher D, Bresch H, Mantion A et al (2011) Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates. J Nanopart Res 13:1593–1604

    Article  CAS  Google Scholar 

  • Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171

    Article  CAS  Google Scholar 

  • Picó Y, Blasco C (2012) Nanomaterials in food, which way forward? Analys Risk Nanomater Environ Food Samp 59:305

    Article  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2007) Functionalized carbon nanotubes in drug design and discovery. Accounts Chem Res 41:60–68

    Article  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar J (2012) Novel approach for silver nanoparticle synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6:12–16

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Rao C, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Analyt Chem 2:435–462

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polymer Sci 36:887–913

    Article  CAS  Google Scholar 

  • Rico CM et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Google Scholar 

  • Saraogi GK, Gupta P, Gupta U, Jain N, Agrawal G (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharmaceut 385:143–149

    Article  CAS  Google Scholar 

  • Schmid G (ed) (2011) Nanoparticles: From Theory to Application. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L et al (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci Total Environ 427:253–262

    Article  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  Google Scholar 

  • Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M et al (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8:383–393

    Article  CAS  PubMed  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    Google Scholar 

  • Syu Y-y, Hung J-H, Chen J-C, Chuang H-W (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Google Scholar 

  • Tarafdar A, Raliya R, Wang W-N, Biswas P, Tarafdar J (2013) Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:943–949

    Article  CAS  Google Scholar 

  • Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112:4134–4140

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Turos E, Shim J-Y, Wang Y, Greenhalgh K, Reddy GSK et al (2007) Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56

    Article  CAS  PubMed  Google Scholar 

  • Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13

    CAS  Google Scholar 

  • Warren BE (1969) X-ray Diffraction. Courier Dover Publications. Reprint of the Addison- Wesley Publishing Compnay, Inc,. Reading Massachusettes, USA, 1969 edn

    Google Scholar 

  • Wu H-L, Kuo C-H, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307–12313

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Li Y et al (2013) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ren L, Wang S, Marathe A, Chaudhuri J, Li G (2011) Functionalization of graphene sheets through fullerene attachment. J Mater Chem 21:5386–5391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanmathi Chavalmane Subbenaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Subbenaik, S.C. (2016). Physical and Chemical Nature of Nanoparticles. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_2

Download citation

Publish with us

Policies and ethics