Skip to main content

Symbiotic Microorganisms Enhance Antioxidant Defense in Plants Exposed to Metal/Metalloid-Contaminated Soils

  • Chapter
  • First Online:
Plants Under Metal and Metalloid Stress

Abstract

Symbiotic microorganisms increase plants resistance to metal(oid)s toxicity by various mechanisms, including changes in antioxidant defense system. Apparently, arbuscular mycorrhizal fungi (AMF) and diazotrophic bacteria modify the antioxidant system response to metal(oid)s contamination. There are positive results in enzymatic and non-enzymatic defense systems. AMF can accumulate ROS in your structures (arbuscules, apoplastic spaces of hyphae, fungal cytosol, intracellular hyphae, cell wall of hyphae and spores). These microorganisms up-regulate various antioxidant defense system enzymes such as SOD, CAT, POD, APX, and GR and regulate genes encoding proteins involved in ROS homeostasis. Higher concentrations of non-enzymatic antioxidants (glutathione, flavonoids, ascorbic acid, phenolic compounds, alkaloids, tocopherol, carotenoids) occur more frequently in colonized plants. Future research should prioritize physiological and molecular genetic approaches under metal(loid)s phytotoxicity in plants associated with these microorganisms. Moreover, advanced ultrastructural analysis techniques can support identification of ROS and antioxidant molecules and enzymes distribution in the structures of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar NO, Medici LO, Olivares FL, Dobbss LB, Torres-Netto A, Silva SF, Novotny EH, Canella LP (2016) Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Ann Appl Biol 168:203–213

    Article  CAS  Google Scholar 

  • Ahmed MMM, Mazen MBD, Nafady NA, Monsef OA (2017) Bioavailability of cadmium and nickel to Daucus carota L. and Corchorus olitorius L. treated by compost and microorganisms. Soil Environ 36:1–12

    Article  CAS  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Allah EFA, Hashem A, Alqarawi AA, Hend AA (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, New York, pp p11–p50

    Chapter  Google Scholar 

  • Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2015) Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol 36:407–420

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Angle JS, Chaney RL (1991) Heavy metal effects on soil populations and heavy metal tolerance of Rhizobium meliloti, nodulation, and growth of alfalfa. Water Air Soil Pollut 57:597–604

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Awoyemi OM, Dzantor EK (2017) Toxicity of coal fly ash (CFA) and toxicological response of switchgrass in mycorrhiza-mediated CFA-soil admixtures. Ecotoxicol Environ Saf 144:438–444

    Article  CAS  PubMed  Google Scholar 

  • Balestrass KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284:187–194

    Article  CAS  Google Scholar 

  • Bamberg S, Carneiro MAC, Ramos SJ, Siqueira JO (2016) Selenium and mycorrhiza on grass yield and selenium content. In: Bañuelos G, Lin Z, Moraes M, Guilherme LRG, Reis A (eds) Global advances in selenium research from theory to application. CRC Press, London, pp 137–139

    Google Scholar 

  • Ban Y, Jiang Y, Li M, Zhang X, Zhang S, Wu Y, Xu Z (2017) Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi. Chemosphere 181:699–709

    Article  CAS  PubMed  Google Scholar 

  • Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765

    Article  CAS  Google Scholar 

  • Benabdellah K, Azcón Aguilar C, Valderas A, Speziga D, Fitzpatrick TB, Ferrol N (2009a) GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 184:682–693

    Article  CAS  PubMed  Google Scholar 

  • Benabdellah K, Merlos MA, Azcón-Aguilar C, Ferrol N (2009b) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2011) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press/Science Publishers, Boca Raton, pp 1–30

    Google Scholar 

  • Biro I, Nemeth T, Takács T (2009) Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Commun Soil Sci Plant Anal 40:227–239

    Article  CAS  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Brígido C, Glick BR, Oliveira S (2017) Survey of plant growth-promoting mechanisms in native portuguese chickpea Mesorhizobium isolates. Microb Ecol 73:900–915

    Article  PubMed  Google Scholar 

  • Checcucci A, Bazzicalupo M, Mengoni A (2017) Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Cham, pp 275–288

    Chapter  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  PubMed  Google Scholar 

  • Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest-Biogeosci For 7:1–9

    Article  Google Scholar 

  • Davar R, Darvishzadeh R, Majd A (2013) Changes in antioxidant systems in sunflower partial resistant and susceptible lines as affected by Sclerotinia sclerotiorum. Biologia 68:821–829

    Article  CAS  Google Scholar 

  • Del Val C, Barea J, Ázcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawi F, Datta R, Ramakrishna W (2015) Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiol Biochem 97:390–399

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J (1991) The genera Azospirillum and Herbaspirillum. In: Ballows A, Trüper HG, Dworkin M, Harder W, Shleifer K (eds) The prokaryotes. Springer, New York, pp 2236–2253

    Google Scholar 

  • Dubey RS (2011) Metal toxiciy, oxidative stress and antioxidant defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press/Science Publishers, Boca Raton, pp 177–203

    Google Scholar 

  • Dutta SC, Neog B (2016) Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Sci Hortic 204:179–184

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24:197–208

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254

    Article  PubMed  Google Scholar 

  • Figueira EM, Lima AL, Pereira SI (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Bhandari P (2013) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst- Int J Dealing Asp Plant Biol 148:609–621

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Springer, Berlin

    Google Scholar 

  • Gillis M, Van TV, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  • González Chavez C, Harris P, Dodd J, Meharg A (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  PubMed  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  CAS  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trend Plant Sci 20:186–194

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Hajiboland R (2014) Reactive oxygen species and photosynthesis. In: Ahmad P (ed) Oxidative damage to plants. Academic, New York, pp 1–63

    Google Scholar 

  • Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediation 16:179–202

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd_Allah E, Alqarawi A, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier, NewYork, pp 135–189

    Chapter  Google Scholar 

  • Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta analysis of context dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Ahmad P (ed) Oxidative damage to plants. Academic, New York, pp 1–63

    Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63

    Article  Google Scholar 

  • Huang RH, Lub YM, Yanga HL, Huang W, Chena K (2016) Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of Sorghum halepense. Sci Asia 42:323–331

    Article  Google Scholar 

  • Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13

    Article  CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    Article  CAS  PubMed  Google Scholar 

  • Jacquart A, Brayner R, Chahine JH, Ha-Duong N (2017) Cd2+ and Pb2+ complexation by glutathione and the phytochelatins. Chemico-Biol Interact 267:2–10

    Article  CAS  Google Scholar 

  • Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX (2016a) Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol 98:112–120

    Article  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Jing YZ (2016b) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  • Judy JD, Kirby JK, McLaughlin MJ, McNear D, Bertsch PM (2016) Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Environ Pollut 214:731–736

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Karthik C, Oves M, Sathya K, Ramkumar VS, Arulselvi PI (2017) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr(VI) stress. Arch Agron Soil Sci 63:1058–1069

    Article  CAS  Google Scholar 

  • Khade SW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Klauberg-Filho O, Siqueira JO, Moreira FMS (2002) Fungos micorrízicos arbusculares em solos de área poluída com metais pesados. Rev Bras Ciênc Solo 26:125–134

    Article  CAS  Google Scholar 

  • Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22:12479–12489

    Article  CAS  Google Scholar 

  • Konieczny A, Kowalska I (2016) The role of arbuscular mycorrhiza in zinc uptake by lettuce grown at two phosphorus levels in the substrate. Agric Food Sci 25:124–137

    Article  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latef AAHA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503

    Article  PubMed  CAS  Google Scholar 

  • Latef AAHA (2013) Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J Agric Sci Technol 15:1437–1448

    Google Scholar 

  • Latef AAHA, Hashem A, Rasool S, Abd_Allah EF, Alqarawi AA, Egamberdieva AD, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407–426

    Article  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41:555–564

    Article  CAS  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzym Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • Long SR (2016) SnapShot: signaling in symbiosis. Cell 167:582–582

    Article  CAS  PubMed  Google Scholar 

  • Manjhi BK, Pal S, Meena SK, Yadav RS, Farooqui A, Singh H, Rakshit A (2016) Mycorrhizoremediation of nickel and cadmium: a promising technology. Nat Environ Pollut Technol 15:647–652

    CAS  Google Scholar 

  • MAPA – Ministério de Agricultura, Pecuária e Abastecimento (2011) Instrução normativa SDA n° 13, de 24 de março de 2011. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília Available in: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf

    Google Scholar 

  • Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel JC, Le Quéré A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • Meneses C, Gonçalves T, Alquéres S, Rouws L, Serrato R, Vidal M, Baldani J (2017) Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416:133–147

    Article  CAS  Google Scholar 

  • Merlos MA, Zitka O, Vojtech A, Azcón-Aguilar C, Ferrol N (2016) The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Sci 253:68–76

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mohamad R, Maynaud G, Le Quéré A, Vidal AC, Klonowska A, Yashiro E, Cleyet-Marel JC, Brunel B (2017) Ancient heavy metal contamination in soils as a driver of tolerant Anthyllis vulneraria rhizobial communities. Appl Environ Microbiol 83:1–13

    Article  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Moore TC (1974) Symbiotic nitrogen fixation in legume nodules. In: Moore TC (ed) Research experiences in plant physiology. Springer, Berlin, pp 417–433

    Chapter  Google Scholar 

  • Moreira FMS, Silva K, Nóbrega RSS, Carvalho F (2010) Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comun Sci 1:74–99

    Google Scholar 

  • Moreira FMS, Ferreira PAA, Vilela LAF, Carneiro MAC (2015) Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils. Springer, Cham, pp 215–243

    Google Scholar 

  • Nascimento JB, Barrigossi JAF (2014) O papel de enzimas antioxidantes na defesa das plantas contra insetos herbívoros e fitopatógenos. Agrar Acad 1:234–250

    Article  Google Scholar 

  • Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol 24:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Nonnoi F, Chinnaswamy AA, Torre VSG, Peña TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Longatti SM, Marra LM, Soares BL, Bomfeti CA, Silva K, Ferreira PAA, Moreira FMS (2014) Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters. World J Microbiol Biotechnol 30:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Pajuelo E, Dary M, Palomares AJ, Rodriguez-Llorente ID, Carrasco JA, Chamber MA (2008) Biorhizoremediation of heavy metals toxicity using rhizobium-legume symbioses. In: Dakora FD, SBM C, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, Dordrecht, pp 101–104

    Chapter  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2014) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Praburaman L, Park SH, Cho M, Lee KJ, Ko JA, Han SS, Lee SH, Kamala-Kannan S, Oh BT (2017) Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pb and Zn by Zea mays L. Environ Sci Pollut Res 24:3172–3180

    Article  CAS  Google Scholar 

  • Rangel WM, Schneider J, Souza CE, Sousa SC, Guimarães GL, Souza MF (2014) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytoremediation 16:840–858

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rozpądek P, Wężowicz K, Stojakowska A, Malarz J, Surówka E, Sobczyk T, Anielska T, Wazny R, Miszalski Z, Turnau K (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L.(Asteraceae) under metal toxicity. Chemosphere 112:217–224

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Pardo B, Zornoza P (2014) Mitigation of Cu stress by legume–Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicol Environ Saf 102:1–5

    Article  PubMed  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Annal Bot 111:743–767

    Article  CAS  Google Scholar 

  • Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S (2017) The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int J Phytoremediation 19:360–370

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Asaeda T, Wang Q, Kaneko Y, Rashid MH (2017) Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora 234:60–68

    Article  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trend Biochem Sci 27:483–486

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Stürmer SL, Guilherme LRG, Moreira FMS, Soares CRFS (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Bundschuh J, Rangel WM, Guilherme LRG (2017) Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environ Pollut 224:125–135

    Article  CAS  PubMed  Google Scholar 

  • Shahabivand S, Aliloo AA, Maivan HZ (2016) Wheat biochemical response to cadmium toxicity under Funneliformis mosseae and Piriformospora indica symbiosis. Bot Lithuanica 22:169–177

    Article  Google Scholar 

  • Sharma V, Parmar P, Kumari N (2016) Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association. J Plant Nutr 39:2025–2036

    Article  CAS  Google Scholar 

  • Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (triticum aestivum l.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci 8:1–21

    PubMed  PubMed Central  Google Scholar 

  • Silva GA, Trufem SFB, Júnior OJS, Maia LC (2005) Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza 15:47–53

    Article  PubMed  Google Scholar 

  • Silva LR, Pereira MJ, Azevedo J, Mulas R, Velazquez E, González-Andrés F, Valentão P, Andrade PB (2013) Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chem 141:3636–3648

    Article  CAS  PubMed  Google Scholar 

  • Siqueira JO, Soares CRFR, Santos JD, Schneider J, Carneiro MAC (2007) Micorrizas e degradação do solo: caracterização, efeitos e ação recuperadora. In: Ceretta CA, Silva LS, Reichert JM (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 219–305

    Google Scholar 

  • Souza T (2015) Handbook of arbuscular mycorrhizal fungi. Springer, New York

    Book  Google Scholar 

  • Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56

    Article  CAS  PubMed  Google Scholar 

  • Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  • Vilela LAF (2015) Cério, lantânio, neodímio e ítrio no crescimento de milho na presença e ausência de micorriza em casa de vegetação e da aplicação de mix desses elementos na produção de grãos em campo. Universidade Federal de Lavras, Lavras

    Google Scholar 

  • Wang L, Huang X, Ma F, Ho SH, Wu J, Zhu S (2017) Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro and macroelements uptake in Phragmites australis. Environ Sci Pollut Res 24:3593–3607

    Article  CAS  Google Scholar 

  • Wani S, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1:35–38

    Article  Google Scholar 

  • Wei Y, Chen Z, Wu F, Li J, ShangGuan Y, Li F, Zeng QR, Hou H (2015) Diversity of arbuscular mycorrhizal fungi associated with a Sb accumulator plant, ramie (Boehmeria nivea), in an active Sb mining. J Microbiol Biotechnol 25:1205–1215

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Glashoff A, Leyval C, Berthelin J (1994) Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil 167:189–196

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Abd_Allah EF (2014) Mycorrhizal association and ROS in plants. In: Ahmad (ed) Oxidative damage to plants. Academic, New York, pp 453–475

    Chapter  Google Scholar 

  • Xie P, Hao PX, Herzberg M, Luo Y, Nies DH, Wei G (2015) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. J Environ Sci 27:179–187

    Article  Google Scholar 

  • Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F (2008) Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol 44:381–391

    Article  CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebid G, Jouzanie GS, Nekoueie MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Cao T, Chen J, Rosen BP, Zhao FJ (2017) Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant Soil 416:259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou YN, Huang YM, Wu QS, He XH (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25:143–152

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laíze A. F. Vilela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilela, L.A.F., Teixeira, A.F.S., Lourenço, F.M.O., Souza, M.D. (2018). Symbiotic Microorganisms Enhance Antioxidant Defense in Plants Exposed to Metal/Metalloid-Contaminated Soils. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_13

Download citation

Publish with us

Policies and ethics