Skip to main content
Log in

Arsenic methylation by a genetically engineered Rhizobium-legume symbiont

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Arsenic (As) is one of the most widespread environmental contaminants. The aim of our study was to test a novel bioremediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia.

Methods

The arsenite [As(III)] S-adenosylmethionine methyltransferase gene (CrarsM) from the alga Chlamydomonas reinhardtii was inserted into the chromosome of Rhizobium leguminosarum bv. trifolii strain R3. The As methylation ability of the recombinant Rhizobium was tested under free living conditions and in symbiosis with red clover plants. Arsenic speciation was determined using high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

Results

Under free-living conditions, CrarsM-recombinant R. leguminosarum gained the ability to methylate As(III) to methylated arsenicals, including methylarsenate [MAs(V)], dimethylarsenate [DMAs(V)] and trimethylarsine oxide [TMAs(V)O]. Red clover plants were inoculated with either control (non-recombinant) or CrarsM-recombinant R. leguminosarum and exposed to 5 or 10 μM arsenite. No methylated As species were detected in red clover plants inoculated with control R. leguminosarum. In contrast, all three methylated species were detected in both the nodules and the shoots when the recombinant Rhizobium established symbiosis with red clover, accounting for 74.7–75.1% and 29.1–42.4% of the total As in the two plant tissues, respectively. The recombinant symbiont also volatilized small amounts of As.

Conclusions

The present study demonstrates that engineered rhizobia expressing an algal arsM gene can methylate and volatilize As, providing a proof of concept for potential future use of legume-rhizobia symbionts for As bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Sun GX, Wang XX, Lorenzo V, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen WR, Bentley R (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7:11–15

    Article  CAS  PubMed  Google Scholar 

  • Delorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    Article  CAS  Google Scholar 

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in south and Southeast Asia. Science 328:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • Huang K, Chen C, Shen QR, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Chen C, Zhang J, Tang Z, Shen QR, Rosen BP, Zhao FJ (2016) Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 50:6389–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  PubMed  Google Scholar 

  • Lozano MJ, Eugenia Salas M, de los Angeles Giusti M, Carla Martini M, Lopez JL, Salto I, Florencia Del Papa M, Pistorio M, Lagares A (2013) Novel tnpR-based transposable promoter traps suitable for RIVET studies in different gram-negative bacteria. J Microbiol Meth 93:9–11

    Article  CAS  Google Scholar 

  • Martinez-Garcia E, Calles B, Arevalo-Rodriguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA (2004) Arsenic in rice - understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Zhao FJ (2012) Arsenic & Rice. Springer, Dordrecht, p171

    Book  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestrot A, Uroic MK, Plantevin T, Islam MR, Krupp EM, Feldmann J, Meharg AA (2009) Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ Sci Technol 43:8270–8275

    Article  CAS  PubMed  Google Scholar 

  • Mestrot A, Feldmann J, Krupp EM, Hossain MS, Roman-Ross G, Meharg AA (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804

    Article  CAS  PubMed  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen-fixation. Plant Cell 7:869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Lehr CR, Yuan CG, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahman S, Kim K-H, Saha SK, Swaraz AM, Paul DK (2014) Review of remediation techniques for arsenic (as) contamination: a novel approach utilizing bio-organisms. J Environ Manag 134:175–185

    Article  CAS  Google Scholar 

  • Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel lD (2011) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Tang Z, Kang Y, Wang P, Zhao F-J (2016a) Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in Arabidopsis thaliana. Plant Soil 401:243–257

    Article  CAS  Google Scholar 

  • Tang Z, Lv Y, Chen F, Zhang W, Rosen BP, Zhao FJ (2016b) Arsenic methylation in Arabidopsis thaliana expressing an algal arsenite methyltransferase gene increases arsenic phytotoxicity. J Agric Food Chem 64:2674–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PP, Sun GX, Zhu YG (2014) Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A. Environ Sci Technol 48:12706–12713

    Article  CAS  PubMed  Google Scholar 

  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP, Feldmann J, Zhao FJ (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Chang Y, Yan Y, Xiong J, Xue XM, Yuan DX, Sun GX, Zhu YG, Miao W (2014) Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahyrnena pyriformis. Aquat Toxicol 149:50–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cao TT, Tang Z, Shen QR, Rosen BP, Zhao FJ (2015) Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl Environ Microbiol 81:2852–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhao FJ, Zhu YG, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42:5008–5013

    Article  CAS  PubMed  Google Scholar 

  • Zhuang XL, Chen J, Shim H, Bai ZH (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Science Foundation of China (grant No. 41330853 and 41571312), the Innovative Research Team Development Plan of the Ministry of Education of China (grant no. IRT1256), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and NIH grant R37 GM55425 to B.P.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Jie Zhao.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

ESM 1

(PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, Y., Cao, T. et al. Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant Soil 416, 259–269 (2017). https://doi.org/10.1007/s11104-017-3207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3207-z

Keywords

Navigation