Skip to main content

Cold-Active Enzymes in Food Processing

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Microorganisms living in extreme environmental conditions (extremophiles) are potential source of extremozymes; they possess utmost stability under extreme environmental conditions. Cold-active enzymes are extremozymes produced by the psychrophiles (extremophiles) and have attracted much attention as biocatalysts due to their capacity to resist unfavourable reaction conditions in the industrial process. Cold-active enzymes possess wide applications in the food industry; these enzymes are not only secreted by bacteria but also from yeasts and moulds. Although enzymes are derived from plant and animal sources, cold-active microbial enzymes have taken advantage, due to their productivity and thermostability. Psychrophilic microorganisms produce a wide range of cold-active enzymes with immune application in food processing. The use of ß-galactosidase for the removal of lactose from refrigerated milk, application of pectinase for the reduction of viscosity and turbidity in chilled juice and use of amylase for hydrolysis of polysaccharides in starch processing industries and processing of meat with the help of cold-active proteases are the representative examples of application of cold-active enzymes. Cold-active enzymes possess exceptional molecular flexibility that has opened up newer areas of applications. In food processing industries, cold-active pectinases have been used for the removal of pectin which is important in fruit juice and wine processing, coffee and tea processing and macerating of plants and vegetable tissue, for degumming of plant fibres, for extracting vegetable oils and for adding poultry feed and in the alcoholic beverages. To fulfil the demand of industries, enzyme technology needs extension of biotechnological approach in terms of both quality and quantity. The potential of cold-active enzymes provides numerous opportunities for industrial applications. However, specific properties of cold-active enzymes may be improved and modified through enzyme engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127–132

    Article  CAS  PubMed  Google Scholar 

  • Adams MWW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662–668

    CAS  PubMed  Google Scholar 

  • Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    Article  CAS  PubMed  Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem (London) 33:21–28

    Article  CAS  Google Scholar 

  • Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M (2002) The cold-active lipase of Pseudomonas fragi: heterologous expression, biochemical characterization and molecular modeling. Eur J Biochem 269:3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Aoyama S, Yoshida N, Inouye S (1988) Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO-12049 in E. coli. FEBS Lett 242:36–40

    Article  CAS  PubMed  Google Scholar 

  • Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C, Skidmore ML (2011) Microbial metabolism in ice and brine at −5 degrees C. Environ Microbiol 13:2269–2278

    Article  PubMed  Google Scholar 

  • Baracat MC, Vanetti MCD, Araujo EF, Silva DO (1991) Growth conditions of a pectinolytic Aspergillus fumigatus for degumming of natural fibres. Biotechnol Lett 13:693–696

    Article  CAS  Google Scholar 

  • Białkowska A, Cieslin’ski H, Nowakowska K, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  PubMed  CAS  Google Scholar 

  • Bonnin E (2003) Mode of action of Fusarium moniliforme endopolygalacturonase towards acetylated pectin. Carbohydr Polym, Amsterdam 52:381–388

    Article  CAS  Google Scholar 

  • Borchert TV, Svendsen A, Andersen C, Nielsen B, Nissem TL, Kjaerulff S (2004) Exhibit alterations in at least one of the following properties relative to parent alpha-amylase: improved pH stability at pH 8–10.5, improved calcium ion stability at pH 8–10.5, increased specific activity at 10–60°C. US Patent No 6673589 B2

    Google Scholar 

  • Braga AA, De Morais PB, Linrdi VR (1998) Screening of yeasts from Brazilian Amazon rain forest for extracellular proteinases production. Syst Appl Microbiol 21:353–359

    Article  CAS  PubMed  Google Scholar 

  • Buisman GJH, Helteren CTW, Kramer GFH, Veldsink JW, Derksen JTP, Cuperus FP (1998) Enzymatic esterifications of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 20:131–136

    Article  CAS  Google Scholar 

  • Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38:1397–1403

    Article  CAS  Google Scholar 

  • Bury D, Jelen P, Kalab M (2001) Disruption of Lactobacillus delbrueckii sp. Bulgaricus 11842 cells of lactose hydrolysis in dairy products: a comparison of sonication, high pressure homogenization and bead milling. Innovative Food Sci Emerg Technol 2(1):23–29

    Article  CAS  Google Scholar 

  • Carrara CR, Rubiolo AC (1994) Immobilization of β-galactosidase on chitosan. Biotechnol Prog 10(2):220–224

    Article  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS (2004) Cold adapted enzymes. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech Publishers, New Delhi, pp 615–638

    Google Scholar 

  • Cavicchioli R, Thomas T (2000) Extremophiles. In: Lederberg J, Alexander M, Bloom BR et al (eds) Encylopedia of microbiology, 2nd edn. Academic, San Diego, pp 317–337

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kaufman MG, Miazgowicz KL et al (2013) Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour Technol 128:145–155

    Article  CAS  PubMed  Google Scholar 

  • Coker J, Peter P, Loveland J, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Meuwis MA, Stals I et al (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. Meth Enzymol 161:329–335

    Article  CAS  Google Scholar 

  • Cowan DA, Casanueva A, Stafford W (2007) Ecology and biodiversity of cold-adapted microorganisms. In: Physiology and biochemistry of extremophiles. American Society of Microbiology, Washington, DC

    Google Scholar 

  • D’Amico S, Marx J-C et al (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278(10):7891–7896

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del-Cid A, Ubilla P, Ravanal MC et al (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172:524–532

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Dewan SS (2014) Global markets for enzymes in industrial applications. BCC Research, Wellesley

    Google Scholar 

  • Dieckelmann M, Johnson LA, Beacham IR (1998) The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J Appl Microbiol 85:527–536

    Article  CAS  PubMed  Google Scholar 

  • Dornez E, Verjans P, Arnaut F, Delcour JA, Courtin CM (2011) Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem 59:9553–9562

    Article  CAS  PubMed  Google Scholar 

  • Fadel M (2000) Production of thermostable amyletic enzymes by A. niger F-909 under SSF. Egypt J Microbiol 35:487–505

    CAS  Google Scholar 

  • Farrell J, Rose AH (1967) Temperature effects on microorganisms. In: Rose AH (ed) Thermobiology. Academic, London, pp 147–218

    Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:512840

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL et al (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-amylase. Appl Environ Microbiol 64:1163–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez S, Geueke B, Delgado O (2002) β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T et al (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Pulicherla KK, Rekha VP et al (2012) Cold active beta-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 28:2859–2869

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H et al (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    Article  CAS  PubMed  Google Scholar 

  • Gounot AM (1991) Bacterial Life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71:386–397

    Article  CAS  PubMed  Google Scholar 

  • Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases: a review. Process Biochem, Barking 38:987–996

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Hamid B (2016) Cold-active α-amylase from psychrophilic and psychrotolerant yeasts. J Global Biosci 7:2670–2677

    Google Scholar 

  • Hamid B, Singh P, Mohiddin FA et al (2013) Partial characterization of cold-active β-galactosidase activity produced by Cystophallobaidium capatitum SPY11 and Rodotorell amusloganosa PT1. J Endocytobiosis Cell Res 24:23–26

    Google Scholar 

  • Hamid B, Ravinder SR, Deepak C et al (2014) Psychrophilic yeasts and their biotechnological applications – a review. Afr J Biotechnol 13(22):2188–2197

    Article  CAS  Google Scholar 

  • Haseltine C, Rolfsmeier M, Blum P (1996) The glucose effect and regulation of amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 178:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatti-Kaul R, Birgisson HO, Mattiasson B (2006) Cold active enzymes in food processing. In: Shetty K, Paliyath G, Pometto A, Levin RE (eds) Food Biotechnology, 2nd edn. CRC, Taylor & Francis, Boca Raton, pp 1631–1653

    Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria-occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hough DW, Danson MJ (1999). Extremozymes) Curr Opin Chem Biol 3:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A, Jennes I, Gerday C (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger and Eggert (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  PubMed  Google Scholar 

  • Horner TW, Dunn ML, Eggett DL, Ogden LV (2011) Beta-galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. J Dairy Sci 94:3242–3249

    Article  CAS  PubMed  Google Scholar 

  • Joseph B (2006) Isolation, purification and characterization of cold adapted extracellular lipases from psychrotrophic bacteria: feasibility as laundry detergent additive. Ph.D thesis, Allahabad Agricultural Institute Deemed University, India

    Google Scholar 

  • Kuddus M, Ramteke PW (2008) Purification and properties of cold-active metallo protease from Curtobacterium luteum and effect of culture conditions on production. Chin J Biotechnol 24:2074–2080

    CAS  Google Scholar 

  • Kuddus M, Saima R, Ahmad IZ (2012) Cold-active extracellular α-amylase production from novel bacteria microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier, Western Himalaya. J Genet Eng Biotechnol 10:151–159

    Article  CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A et al (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    Article  CAS  PubMed  Google Scholar 

  • Lambo A, Patel T (2006) Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr Microbiol 53(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:66–71

    Article  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Margesin R, Feller G, Gerday C et al (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885

    Google Scholar 

  • Mateo C, Monti R, Pessela BC et al (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20:1259–1262

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1966) Marine psychrophilic bacteria oceanoger. Mar Biol Ann Rev 4:105–121

    Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at -15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Fujimoto Y, Uchino M et al (2003) Isolation and characterization of psychrophiles producing cold-active β-galactosidase. Lett Appl Microbiol 37:154–157

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S et al (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M (2006a) Cold-active β-galactosidase activity of isolated psychrophilic basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Fujimoto Y, Ikehata R (2006b) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72:720–725

    Article  CAS  PubMed  Google Scholar 

  • Neklyudov AD, Ivankin AN, Berdutina AV (2000) Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol 36:452–459

    Article  Google Scholar 

  • Pandey A, Nigam P, Soccol CR et al (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Oh YS, Lim JY et al (2006) Isolation and characterization of cold-adapted strains producing β-galactosidase. J Microbiol 44:396–402

    CAS  PubMed  Google Scholar 

  • Pilnik W, Rombouts FM (1985) Polysaccharides and food processing. Carbohydr Res 142:93–105

    Article  CAS  PubMed  Google Scholar 

  • Pivarnik LF, Senecal AG, Rand AG (1995) Hydrolytic and transgalactosylic activities of commercial beta-galactosidase (lactase) in food processing. Adv Food Nut Res 38:1–102

    Article  CAS  Google Scholar 

  • Pulicherla KK, Mrinmoy G, Kumar S et al (2011) Psychrozymes – the next generation industrial enzymes. J Mar Sci Res Dev 1:102

    Article  Google Scholar 

  • Pulicherla KK, Kumar PS, Manideep K, Rekha VP, Ghosh M, Sambasiva Rao KR (2013) Statistical approach for the enhanced production of cold-active beta-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of bay of Bengal. Prep Biochem Biotechnol 43:766–780

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281

    Article  CAS  PubMed  Google Scholar 

  • Reid I, Ricard M (2002) Pectinase in papermaking: solving retention problems in mechanical pulp bleached with hydrogen peroxide. Enzym Microb Technol 26:115–123

    Article  Google Scholar 

  • Rothschild LJ, Manicinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Ruberto L, Vazquez S, Lobalbo A et al (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17(1):47–56

    Article  Google Scholar 

  • Russell NJ (2000) Towards a molecular understanding of cold activity of enzymes from psychrophiles. Extreamophiles 4:83–90

    Article  CAS  Google Scholar 

  • Russell NJ, Hamamoto T (1998) In: Horikoshi K, Grant WD (eds) Psychrophiles in extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 25–45

    Google Scholar 

  • Sabri A, Bare G, Jacques P (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276(16):12691–12696

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Hamid B, Singh P et al (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 5(2):115–121

    Article  CAS  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase and protopectinase: production, properties, and applications. Adv Appl Microbiol 39:213–294

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NS (1902) Uebereinig epsychrophile Mikroorganismen und ihrVorkommen. Centr Bakteriol Parasitenk, Abt II 9:145–147

    Google Scholar 

  • Shukla TP, Wierzbicki LE (1975) β-galactosidase technology: a solution to the lactose problem. Food Sci Nutr 25:325–356

    Google Scholar 

  • Soares MMCN (2001) Pectinolytic enzyme production by Bacillus sp. and their potential application on juice extraction. World J Microbiol Biotechnol, Dordrecht 17:79–82

    Article  CAS  Google Scholar 

  • Speer E (1998) Milk and dairy product technology. Marcel Dekker, New York

    Google Scholar 

  • Stokes JL (1963) General biology and nomenclature of psychrophilic microorganisms. Recent progress in microbiology VIII. University of Toronto Press, Toronto, pp 187–192

    Google Scholar 

  • Suarez FL, Savaiano DA, Levitt MD (1995) Review article: the treatment of lactose intolerance. Aliment Pharmacol Ther 9(6):589–597

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Owusu ARK, Knapp J (1996) Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 57:415–418

    Article  CAS  Google Scholar 

  • Trindade RC, Resende MA, Silva CM et al (2002) Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Syst Appl Microbiol 25:294–300

    Article  CAS  PubMed  Google Scholar 

  • Truong LV, Tuyen H, Helmke E et al (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5:35–44

    Article  CAS  PubMed  Google Scholar 

  • Tutino ML, di Prisco G, Marino G et al (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Tweedie LS, MacBean RD, Nickerson TA (1978) Present and potential uses for lactose and some lactose derivative. Food Technol Assoc Australia 30:57–62

    CAS  Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K et al (2010) A novel cold-adapted cellulase complex from Eisenia fetida: characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1,3glucanase, and β-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157:26–32

    Article  PubMed  CAS  Google Scholar 

  • Van den Burg B (2003) Extremophiles as a source for novel enzyme. Corr Opin Microbiol 6:213–218

    Article  CAS  Google Scholar 

  • Wang F, Hao J, Yang C, Sun M (2010) Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl Biochem Biotechnol 162:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Ward OP (1985) Proteolytic enzymes. In: Moo-Young M (ed) Comprehensive biotechnology, the practice of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, pp 789–818

    Google Scholar 

  • Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14(3):281–291

    Article  CAS  Google Scholar 

  • Wang SY, Hu W, Lin XY, Wu ZH, Li YZ (2012) A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 93:1503–1512

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamid, B., Mohiddin, F.A. (2018). Cold-Active Enzymes in Food Processing. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_19

Download citation

Publish with us

Policies and ethics