Skip to main content
Log in

Cold Active Pectinases: Advancing the Food Industry to the Next Generation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pectinase has been an integral part of commercial food processing, where it is used for degradation of pectin and facilitates different processing steps such as liquefaction, clarification and juice extraction. The industry currently uses pectinases from mesophilic or thermophilic microorganisms which are well established, but recently, there has been is a new trend in the food industry to adopt low-temperature processing. This trend is due to the potential economic and environmental advantages which the industry envisages. In order to achieve this change, an alternative for the existing pectinases, which are mostly mesophilic and temperature-dependent, must be identified, which can function efficiently at low temperatures. Psychrophilic pectinases derived from cold-adapted microorganisms, are known to function at low to freezing temperatures and may be an alternative to address the problem. Psychrophilic pectinases can be obtained from the vast microflora inhabiting various cold regions on earth such as oceans, Polar Regions, snow-covered mountains, and glaciers. This article is intended to study the advantages of cold active pectinases, its sources, and the current state of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cabeza, M. S., Fanny, L. B., Ernesto, M. P., Flavia, L., Baigorí, M. D., & Morata, V. I. (2011). Selection of psychrotolerant cold-active pectinases for biotechnological process at low temperature. Food Technology and Biotechnology, 49(2), 187–195.

    CAS  Google Scholar 

  2. Dosanjh, N. S., & Hoondal, G. S. (1996). Production of constitutive, thermostable, hyperactive exo-pectinases form Bacillus GK-8. Biotechnology Letters, 18(12), 1435–1438.

    Article  Google Scholar 

  3. Pedrolli, D. B., Monteiro, A. C., Gomes, E., & Carmona, E. C. (2009). Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnology Journal, 3, 9–18.

    Article  CAS  Google Scholar 

  4. Semenova, M. V., Sinitsyna, O. A., Morozova, V. V., Fedorova, E. A., Gusakov, A. V., Okunev, O. N., et al. (2006). Use of a prepration from fungal pectin lyase in the food industry. Applied Biochemistry and Microbiology, 42(6), 598–602.

    Article  CAS  Google Scholar 

  5. Truong, L. V., Tuyen, H., Helmke, E., Binh, L. T., & Schweder, T. (2001). Cloning of two pectatelyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles, 5(1), 35–44.

    Article  CAS  Google Scholar 

  6. Pulicherla, K. K., Mrinimoy Ghosh, Suresh Kumar, P., & Sambasiva Rao, K. R. S. (2011). Psychrozymes—the next generation industrial enzymes. Journal of Marine Science: Research and Development, 1, 1.

    Google Scholar 

  7. Madden D. (2000). Enzymes in fruit juice production, In A Jam and out of juice (pp. 1–10), Version 1. http://www.ncbe.reading.ac.uk.

  8. Harholt, J., Suttangkakul, A., & Scheller, H. V. (2010). Biosynthesis of pectin. Plant Physiology, 153, 384–395.

    Article  CAS  Google Scholar 

  9. Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344, 1879–1900.

    Article  CAS  Google Scholar 

  10. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  11. Prathyusha, K., & Suneetha, V. (2011). Bacterial pectinases and their potent biotechnological application in fruit processing/juice production industry: a review. Journal of Phytology, 3(6), 16–19.

    Google Scholar 

  12. Blanco, P., Sieiro, C., & Villa, T. G. (2009). Production of pectic enzymes in yeasts. FEMS Microbiology Letters, 175, 1–9.

    Article  Google Scholar 

  13. Alkorta, I., Garbisu, C., Llama, M. J., & Serra, J. L. (1998). Industrial applications of pectic enzymes: a review. Process Biochemistry, 33, 21–28.

    Article  CAS  Google Scholar 

  14. Whitaker, J. R. (1990). Microbial pectolytic enzymes, In W. M. Fogerty and G. T. kelly (Eds.), Microbial enzymes and biotechnology (pp. 133–176, 2nd edition.

  15. Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry, 40, 2931–2944.

    Article  CAS  Google Scholar 

  16. Margesin, R., Neuner, G., & Storey, K. B. (2007). Cold-loving microbes, plants and animals—fundamental and applied aspects. Naturwissenschaften, 94, 77–99.

    Article  CAS  Google Scholar 

  17. Gummadi, S. N., & Sunil Kumar, D. (2005). Microbial pectic transeliminases. Biotechnology Letters, 27, 451–458.

    Article  CAS  Google Scholar 

  18. Waheeda, M. A., Jekayinfab, S. O., Ojediranb, J. O., & Imeokpariaa, O. E. (2008). Energetic analysis of fruit juice processing operations in Nigeria. Energy, 33, 35–45.

    Article  Google Scholar 

  19. Vlugt-Bergman, C. J. B., Meeuwsen, P. J. A., Voragen, A. G. J., & Ooyen, A. J. J. (2000). Endo-Xylogalacturonan hydrolase, a novel pectinolytic enzyme. Applied and Environmental Microbiology, 66(1), 36–41.

    Article  Google Scholar 

  20. Zandleven, J., Beldman, G., Bosveld, M., Benen, J., & Voragen, A. (2005). Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides. Biochemistry Journal, 387, 719–725.

    Article  CAS  Google Scholar 

  21. Alimardani-Theuil, P., Gainvors-Claise, A., & Duchiron, F. (2011). Yeasts: an attractive source of pectinases—from gene expression to potential applications: a review. Process Biochemistry, 46, 1525–1537.

    Article  CAS  Google Scholar 

  22. Hoondal, G. S., Tiwari, R. P., Tewari, R., Dahiya, N., & Beg, Q. K. (2002). Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 59, 409–418.

    Article  CAS  Google Scholar 

  23. Sakai, T., Sakamoto, T., Hallaert, J., Vandamme, E. J. (1993). Pectin, pectinase, and protopectinase: production, properties, and applications. Advances in Applied Microbiology (Vol. 39, pp. 213–294). London: Academic Press.

  24. Lang, C., & Dornenburg, H. (2000). Perspectives in the biological function and the technological application of polygalacturonases. Applied Microbiology and Biotechnology, 53, 366–375.

    Article  CAS  Google Scholar 

  25. Yoder, M. D., Keen, N. T., & Jurnak, F. (1993). New domain motif: the structure of pectatelyase C, a secreted plant virulence factor. Science, 260(5113), 1503–1507.

    Article  CAS  Google Scholar 

  26. Thomas, L. M., Doan, C. N., Oliver, R. L., & Yoder, M. D. (2002). Structure of pectatelyase A: comparison to other isoforms. Acta Crystallographica Section D, 58, 1008–1015.

    Article  CAS  Google Scholar 

  27. Lietzke, S. E., Keen, N. T., Yoder, M. D., & Jurnak, F. (1994). The three-dimensional structure of pectate lyase E, a plant virulence factor from Erwinia chrysanthemi. Plant Physiology, 106, 849–862.

    CAS  Google Scholar 

  28. Jenkins, J., Mayans, O., Smith, D., Worboys, K., & Pickersgill, R. W. (2001). Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. Journal of Molecular Biology, 305, 951–960.

    Article  CAS  Google Scholar 

  29. Mayans, O., Scott, M., Connerton, I., Gravesen, T., Benen, J., Visser, J., et al. (1997). Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate binding clefts of pectin and pectatelyases. Structure, 5, 677–689.

    Article  CAS  Google Scholar 

  30. Pickersgill, R., Jenkins, J., Harris, G., Nasser, W., & Robert-Baudouy, J. (1994). The structure of Bacillus subtilis pectatelyase in complex with calcium. Nature Structural Biology, 1, 717–723.

    Article  CAS  Google Scholar 

  31. Akita, M., Suzuki, A., Kobayashi, T., Ito, S., & Yamane, T. (2000). Crystallization and preliminary X-Ray analysis of high-alkaline pectate lyase. Acta Crystallographica Section D, 56, 749–750.

    Article  CAS  Google Scholar 

  32. Vitali, J., Schick, B., Kester, H. C. M., Visser, J., & Jurnak, F. (1998). The three dimensional structure of Aspergillus niger pectin lyase B at 1.7—a resolution. Plant Physiology, 116, 69–80.

    Article  CAS  Google Scholar 

  33. Pickersgill, R., Smith, D., Worboys, K., & Jenkins, J. (1998). Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. Journal of Biological Chemistry, 273, 24660–24664.

    Article  CAS  Google Scholar 

  34. Van Pouderoyen, G., Snijder, H. J., Benen, J. A., & Dijkstra, B. W. (2003). Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Letters, 554, 462–466.

    Article  CAS  Google Scholar 

  35. Van Santen, Y., Benen, J. A. E., Schroter, K. H., Kalk, K. H., Armand, S., Visser, J., et al. (1999). 1.68—A crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. Journal of Biological Chemistry, 274, 30474–30480.

    Article  Google Scholar 

  36. Johansson, K., El-Ahmad, M., Friemann, R., Jornvall, H., Markovic, O., & Eklund, H. (2002). Crystal structure of plant pectin methylesterase. FEBS Letters, 51, 243–249.

    Article  Google Scholar 

  37. Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., et al. (2005). Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell, 17, 849–858.

    Article  CAS  Google Scholar 

  38. S. N. Gummadi, N. Manoj, D. Sunil Kumar. (2007). Structural and biochemical properties of pectinases. In: J. Polaina and A.P. MacCabe (Eds.), Industrial Enzymes, 99–115.

  39. Yoder, M. D., Lietzke, S. E., & Jurnak, F. (1993). Structure, 1, 241–251.

    Article  CAS  Google Scholar 

  40. Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdollah, F., & Gargouri, A. (2002). Hyper production of pectinase activities by fully constitutive mutant (CT 1) of Penicillium occitanis. Enzyme and Microbial Technology, 30, 662–666.

    Article  CAS  Google Scholar 

  41. Christensen, T. M., Nielsen, J. E., Kreiberg, J. D., Rasmussen, P., & Mikkelsen, J. D. (2002). Pectin methyl esterase from orange fruit: characterization and localization by in-situ hybridization and immunohistochemistry. Planta, 206, 493–503.

    Article  Google Scholar 

  42. Visser, J., & Voragen, A. G. J. (Eds.). (1996). Pectins and pectinases. Amsterdam: Elsevier.

    Google Scholar 

  43. McNeil, M., Darvil, A. G., Fry, S. C., & Albersheim, P. (1984). Annual Review Beach, 53, 625–663.

    Article  CAS  Google Scholar 

  44. Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24, 383–409.

    Article  CAS  Google Scholar 

  45. Feller, G., & Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 1, 200–208.

    Article  CAS  Google Scholar 

  46. Cummings, S. P., & Black, G. W. (1999). Polymer hydrolysis in a cold climate. Extremophiles, 3, 81–87.

    Article  CAS  Google Scholar 

  47. Birgisson, H., Delgado, O., Arroyo, L. G., Hatti-Kaul, R., & Mattiasson, B. (2003). Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles, 7, 185–193.

    CAS  Google Scholar 

  48. Margesin, R., Fauster, V., & Fonteyne, P. A. (2005). Characterization of cold-active pectatelyases from psychrophilic Mrakia frigida. Letters in Applied Microbiology, 40, 453–459.

    Article  CAS  Google Scholar 

  49. Naga Padma, P., Anuradha, K., & Reddy, G. (2011). Pectinolytic yeast isolates for cold-active polygalacturonase production. Innovative Food Science and Emerging Technologies, 12, 178–181.

    Article  CAS  Google Scholar 

  50. Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T., & Tomizuka, N. (2004). Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Letters in Applied Microbiology, 38, 383–387.

    Article  CAS  Google Scholar 

  51. Merin, M. G., Mendoza, L. M., Farías, M. E., & Morita de Ambrosini, V. M. (2011). Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. International Journal of Food Microbiology, 147, 144–148.

    Article  CAS  Google Scholar 

  52. Nakagawa, T., Yamada, K., Miyaji, T., & Tomizuka, N. (2002). Cold active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Journal of Bioscience and Bioengineering, 94, 175–177.

    Article  CAS  Google Scholar 

  53. Hazel, J. R., & Williams, E. E. (1990). The role of alterations in membrane lipid composition in enabling phsyciological adapatation to organisms to their physical environment. Progress in Lipid Research, 29, 167–227.

    Article  CAS  Google Scholar 

  54. Clark, M. S., Clarke, A., Cockell, S. C., Convey, P., & Detrich, H. W. (2004). Antartic genomics. Comparative and Functional Genomics, 5, 230–238.

    Article  CAS  Google Scholar 

  55. Chattopadhyay, M. K. (2002). Mechanism of bacterial adaptation to low temperature—a review. Journal of Biosciences, 31, 157–165.

    Article  Google Scholar 

  56. Yamashita, Y., Nakamura, N., Omiya, K., Nishikawa, J., & Kawahara, H. (2002). Identification of an antifreeze lipoprotein from Morazella sp. of Antarctic origin. Bioscience, Biotechnology, and Biochemistry, 66, 239–247.

    Article  CAS  Google Scholar 

  57. Hochachka, P. W., & Somero, G. N. (1984). Biochemical adaptations (pp. 355–449). Princeton University Press: Princeton.

    Google Scholar 

  58. Somero, G. N. (2004). Adaptation of enzymes to temperature: searching for basic “strategies”. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 139, 321–333.

    Article  CAS  Google Scholar 

  59. Methe, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X. J., et al. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwelliapsychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences of the United States of America, 102, 10913–10918.

    Article  CAS  Google Scholar 

  60. Ganga, A., Piñaga, F., Querol, A., Vallés, S., & Ramón, D. (2001). Cell-wall degrading enzymes in the release of grape aroma precursors. Food Science and Technology International, 7, 83–87.

    Article  CAS  Google Scholar 

  61. Zoecklein, B. W., Marcy, J. E., Williams, J. M., & Jasinsky, Y. (1997). Effect of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl, glucose potential, olatile terpenes and selected aglycones of white Riesling (Vitisvinifera) wines. Journal of Food Composition and Analysis, 10, 55–65.

    Article  CAS  Google Scholar 

  62. Takasawa, T., Sagisaka, K., Yagi, K., Uchiyama, K., Aoki, A., Takaoka, K., et al. (1997). Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Canadian Journal of Microbiology, 43(5), 417–424.

    Article  CAS  Google Scholar 

  63. Anuradha, K., Naga Padma, P., Venkateshwar, S., & Reddy, G. (2010). Fungal isolates from natural pectic substrates for polygalacturonase and multienzyme production. Indian Journal of Microbiology, 50, 339–344.

    Article  CAS  Google Scholar 

  64. Van Rensburg, P., & Pretorius, I. S. (2000). Enzymes in winemaking: harnessing natural catalysts for efficient biotransformations—a review. South African Journal for Enology and Viticulture, 21. Special Issue.

  65. Pulicherla, K. K., Suresh Kumar, P., Manideep, K., Rekha, V. P. B., Mrinmoy Ghosh, & Sambasiva Rao, K. R. S. (2013). Statistical approach for the enhanced production of cold active β-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of Bay of Bengal. Preparative Biochemistry and Biotechnology, 43(8), 766–780.

    Article  CAS  Google Scholar 

  66. Mrinmoy Ghosh, Pulicherla, K. K., Rekha, V. P. B., & Sambasiva Rao, K. R. S. (2013). Optimization of process condition for lactose hydrolysis in paneer whey with cold adaptive β-Galactosidase from psychrophilic Thalassospira frigidphilosprofundus. International Journal of Dairy Technology, 6(2), 256–263.

    Article  CAS  Google Scholar 

  67. Mrinmoy Ghosh, Pulicherla, K. K., Rekha, V. P. B., & Sambasiva Rao, K. R. S. (2012). Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World Journal of Microbiology and Biotechnology, 28(9), 2859–2869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Pulicherla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adapa, V., Ramya, L.N., Pulicherla, K.K. et al. Cold Active Pectinases: Advancing the Food Industry to the Next Generation. Appl Biochem Biotechnol 172, 2324–2337 (2014). https://doi.org/10.1007/s12010-013-0685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0685-1

Keywords

Navigation