Skip to main content

Omics-Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.)

  • Chapter
  • First Online:
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective

Abstract

Soil salinity is one of the most crucial abiotic stresses that limit global food production. Due to the impacts of climate change, salinity poses a serious threat to future food and nutritional security of many countries. Maize has become a staple food in many parts of the world, with total production surpassing that of wheat or rice. It is sensitive to soil salinity. Osmotic and ion toxicity are the two major physiological problems that maize plants face under salt stress conditions. The detrimental effects of salt stress on survival and growth of maize plants are very complex. It is a prerequisite to introduce novel breeding approaches for mitigating this specific peril. Plant breeders have been manipulating a wide range of strategies that definitely improve maize production under salt-affected soils. This chapter reviews current updates of omics approaches on maize under salt stress conditions to shed light on complex controlling networks involved in salt tolerance. Better understanding of the mechanisms of salt stress tolerance through omics approaches was found useful for engineering salt-tolerant maize varieties for sustainable production of this major food crop under saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraha B, Yohannes G (2013) The role of seed priming in improving seedling growth of maize (Zea mays L.) under salt stress at field conditions. Agric Sci 04:666–672

    Google Scholar 

  • Adams I, Miano D, Kinyua Z, Wangai A, Kimani E, Phiri N et al (2013) Use of next-generation sequencing for the identification and characterization of maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol 62:741–749

    Article  CAS  Google Scholar 

  • Agrawal PK, Saini N, Babu BK, Bhatt JC (2013) Omics approaches in maize improvement. OMICS Applications in Crop Science: 73

    Google Scholar 

  • Ahmad R, Waraich EA, Ashraf MY, Akram M, Mohsan M, Iqbal J (2010) Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak J Bot 42:141–154

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.) Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad P, Azooz MM, Prasad MNV (2013) Salt stress in plants: signalling, omics and adaptations. Springer, New York

    Book  Google Scholar 

  • Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–647

    Google Scholar 

  • Akram M, Ashraf MY, Ahmad R, Waraich EA, Ishfaq M (2010) Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak J Bot 42:141–154

    CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. https://doi.org/10.1016/j.cell.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  • Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kishor PB, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199–210. https://doi.org/10.1007/s00299-014-1699-z

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero C, PÃrez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G et al (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284. https://doi.org/10.1093/bioinformatics/btm554

    Article  CAS  PubMed  Google Scholar 

  • Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-l, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol 141:1000–1011. https://doi.org/10.1104/pp.106.078063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Lacerda CF, Silva JV, Costa PHA, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16(1):31–38

    Google Scholar 

  • Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahalain A et al (2006) Mapping QTLs for popping ability in a popcorn × flint corn cross. Theor Appl Genet 112:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Jiang J, Chung J-S, Wang B, Chen J, Xin Z et al (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks

    Google Scholar 

  • Bilgin O, Baser I, Korkut KZ, Balkan A, Saglam N (2008) The impacts on seedling root growth of water and salinity stress in maize (Zea mays indentata sturt.) Bulgarian J Agr Sci 14:313–320

    Google Scholar 

  • Brar D, Khush G (2002) Transferring genes from wild species into Rice. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, Oxford, pp 197–217

    Google Scholar 

  • Brohee S, Faust K, Lima-Mendez G, Vanderstocken G, van Helden J (2008) Network analysis tools: from biological networks to clusters and pathways. Nat Protoc 3:1616–1629. https://doi.org/10.1038/nprot.2008.100

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64. https://doi.org/10.1186/1471-2229-10-64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. Abiotic stress plants-mech. adapt. In: Prof. Arun Shanker (ed) InTech, https://doi.org/10.5772/22331

  • Chandna R, Azooz MM, Ahmad P (2013) Recent advances of metabolomics to reveal plant response during salt stress. Springer, New York, pp 1–14

    Google Scholar 

  • Cha-Um S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot 41:87–98

    CAS  Google Scholar 

  • Chen X, Guo Z (2008) Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci 9:2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549. https://doi.org/10.1038/ng2001

    Article  CAS  PubMed  Google Scholar 

  • Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol 28:66–74

    Google Scholar 

  • Collado MnB, Aulicino MnB, Arturi MJ, Molina Md C (2016) Selection of maize genotypes with tolerance to osmotic stress associated with salinity. Agric Sci 07:82–92

    CAS  Google Scholar 

  • Collard BC, Vera Cruz CM, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:25

    Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, et al (2008) Plant breeding: past, present, and future.Oxford Publishing, Oxford, UK:3–50

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1695

    Google Scholar 

  • Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P et al (2015) QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.) Euphytica 203:273–283

    Article  CAS  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during arabidopsis thaliana germination and seedling growth. PLoS One. 6(8):e22832

    Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. PCE Plant Cell Environ 33:648–654

    Article  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38. https://doi.org/10.1093/aob/mcn205

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Filippou P, Fotopoulos V, Bouchagier P, Skotti E (2014) Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot 97:1–10

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci 111:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsche-Neto R, DoVale JC, Éder Cristian Malta de Lanes, Marcos Deon Vilela de Resende, Miranda GV (2012) Genome-wide selection for tropical maize root traits under conditions of nitrogen and phosphorus stress – https://doi.org/10.4025/actasciagron.v34i4. 15884. Universidade Estadual de Maringá

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043. https://doi.org/10.1016/j.cub.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E et al (2010) The control of axillary meristem fate in the maize ramosa pathway. Development 137:2849–2856. https://doi.org/10.1242/dev.051748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  CAS  PubMed  Google Scholar 

  • Geilfus CM, Zorb C, Muhling KH (2010) Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.) Plant Physiol Biochem 48:993–998

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2011) Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:17

    Google Scholar 

  • Hashida S-N, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanzadehdelouei M, Vazin F, Nadaf J (2013) Effect of salt stress in different stages of growth on qualitative and quantitative characteristics of cumin (Cuminum Cyminum L.) Cercet Agronomice Moldova 46:89–97

    Article  Google Scholar 

  • Hoque MMI (2013) Evaluation and mapping QTLs of maize salinity tolerance. Ph.D. thesis. Chinese Academy of Agricultural Sciences Dissertation, Chaina

    Google Scholar 

  • Hoque MMI, Zheng J, Wang G (2015) Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. J BioSci Biotechnol 4:39–49

    Google Scholar 

  • Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M et al (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121. https://doi.org/10.1093/nar/gkp406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhang H, Kan G, Ma D, Zhang D, Shi G et al (2013) Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.) Genet: Int J Genet Evol 141:247–254

    Article  CAS  Google Scholar 

  • Hussain K, Majeed A, Nawaz K, Nisar MF (2010) Changes in morphological attributes of maize (Zea mays L.) under NaCl salinity. Am-Eurasian J Agric Environ Sci 8:230–232

    CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Julkowska MM, Hoefsloot HC, Mol S, Feron R, de Boer GJ, Haring MA et al (2014) Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol 166:1387–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang M, Zhao Q, Zhu D, Yu J (2012) Characterization of microRNAs expression during maize seed development. BMC Genomics 13:360. https://doi.org/10.1186/1471-2164-13-360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H et al (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321. https://doi.org/10.1111/j.1365-313X.2008.03690.x

    Article  CAS  PubMed  Google Scholar 

  • Kearsey M, Farquhar A (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JT, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Singh A, Mithra SVA, Parida SK, Jain S, Tiwari KK et al (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitner D, Klepsch S, Ptashnyk M, Marchant A, Kirk GJD, Schnepf A et al (2010) A dynamic model of nutrient uptake by root hairs. New Phytol 185:792–802

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG et al (2008) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Int J Plant Breed 162:345–351

    Google Scholar 

  • Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H et al (2012) Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292. https://doi.org/10.1104/pp.111.188789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Zhu M, Yano M, Gao J, Liang Z, Su W et al (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Liseron-Monfils C, Ware D (2015) Revealing gene regulation and associations through biological networks. Curr Plant Biol 3–4:30–39. https://doi.org/10.1016/j.cpb.2015.11.001

    Article  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Qin C, Chen Z, Zuo T, Yang X, Zhou H, et al (2014) Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics 15: 25–25. https://doi.org/10.1186/1471-2164-15-25

  • Lobell DB, Burke MB, Tebaldi C, Mastrandea MD, Falcon WP, Naylor RL (2008) Prioritizing climate chnage adaptation needs for food security in 2030. Science 319(5863):607–610

    Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RG et al (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L.) Theor Appl Genet 126:2335–2351

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (2007) The origins of genome architecture Sinauer Associates Sunderland Associates, Inc:340

    Google Scholar 

  • Maiti R, Rodríguez HG, Rajkumar D, Koushik S, Vidyasagar P (2012) Genotypic variability in salinity tolerance of maize pipe line hybrids at seedling stage. Int J Bio-resour Stress Manag 3:427–432

    Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) Euphytica 94:263–272

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG (2004) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep: Commun Free Radic Res 9:29–36

    Article  CAS  Google Scholar 

  • Mica E, Gianfranceschi L, PÃ ME (2006) Characterization of five microRNA families in maize. J Exp Bot 57:2601–2612

    Article  CAS  PubMed  Google Scholar 

  • Morris M, Dreher K, Ribaut J-M, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed Mol Breed: New Strateg Plant Improv 11:235–247

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A 106:22534–22539. https://doi.org/10.1073/pnas.0908718106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesqueira J, García MD, Molina MC (2003) NaCl tolerance in maize (Zea mays ssp. mays) × Tripsacum dactyloides L. hybrid calli in regenerated plants. 2003 1: 5. https://doi.org/10.5424/sjar/2003012-21

  • Prasanna BM, Pixley K, Warburton ML, Xie CX (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed: New Strateg Plant Improv 26:339–356

    Article  CAS  Google Scholar 

  • Praveenkumar B, Salimath PM, Sridevi O (2014) Study of genetic variability in maize (Zea mays L.) inbred lines under stress condition. Plant Arch 14:679–685

    Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158. https://doi.org/10.1007/s10681-017-1938-9

    Article  Google Scholar 

  • Qiu F, Yonglian Z, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Annal Bot 99(6):1067–1081. https://doi.org/10.1093/aob/mcm055

  • Ragot M, Sisco P, Hoisington D, Stuber C (1995) Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci 35:1306–1315

    Article  CAS  Google Scholar 

  • Ragot M, Lee M, Guimaraes E (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. Marker-assisted selection, Current status and future perspectives in crops, livestock, forestry and fish: 117–150

    Google Scholar 

  • Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C (2010) Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol 188:52–66

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152:713–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112. https://doi.org/10.1242/dev.043067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ED, Jackson T, Moussaieff A, Aharoni A, Benfey PN (2012) Cell type-specific transcriptional profiling: implications for metabolite profiling. Plant J 70:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saddiqe Z, Javeria S, Khalid H, Farooq A (2016) Effect of salt stress on growth and antioxidant enzymes in two cultivars of maize (Zea mays L.) Pak J Bot 48:1361–1370

    CAS  Google Scholar 

  • Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): podding is a particularly sensitive stage. Environ Exp Bot 71:260–268

    Article  CAS  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    Article  CAS  Google Scholar 

  • Sayed El (2011) Influence of salinity stress on growth parameters, photosynthetic activity and cytological studies of Zeamays L. plantusing hydrogel polymer. Agric Biol J N Am 2:907–920. https://doi.org/10.5251/abjna.2011.2.6.907.920

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shannon MC, Grieve CM, Francois LE (1994) Whole-plant response to salinity. Plant-Environ Interact:199–244

    Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Xia W (2012) Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem Soc Rev 41:7687–7697

    Article  CAS  PubMed  Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B: Biol Sci 367(1595):1441–1452

    Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. https://doi.org/10.1093/bioinformatics/btq675

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573. https://doi.org/10.1186/1471-2164-14-573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Mol Genet Biochem 80:17–36

    CAS  Google Scholar 

  • Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D et al (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J: Cell Mol Biol 73:405–416

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Thomson MJ, Rahman MA, Rahman MA, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in Rice. Rice 3:2–3

    Article  Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A et al (2014) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41:1178–1190. https://doi.org/10.1071/FP13318

    Article  CAS  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Tominaga-Wada R, Ishida T, Wada T (2011) New insights into the mechanism of development of Arabidopsis root hairs and trichomes. Int Rev Cell Mol Biol 286:67–106

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Turan MA, Elkarim AHA, Taban N, Taban S (2010) Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr J Agric Res 5:584–588

    Google Scholar 

  • Umar U, Ado S, Aba D, Bugaje S (2015) Studies on genetic variability in maize (Zea mays L.) under stress and non-stress environmental conditions. Int J Agron Agric Res 7:70–77

    Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Usman M, Haq AU, Ahsan T, Amjad S, Riasat Z, Umar M (2012) Effect of NaCl on morphological attributes of maize (Zea mays L.) World J Agric Sci 8:381–384

    Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy M, Sopory S (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628

    Article  CAS  PubMed  Google Scholar 

  • Walbot V (2008) Maize genome in motion. BioMed Central Ltd.

    Google Scholar 

  • Wang Z, Zemetra RS, Hansen J, Mallory-Smith CA (2001) The fertility of wheat× jointed goatgrass hybrid and its backcross progenies. Weed Sci 49:340–345

    Article  CAS  Google Scholar 

  • Warburton ML, Rauf S, Marek L, Hussain M, Ogunola O, de Jesus Sanchez Gonzalez J (2017) The use of crop wild relatives in maize and sunflower breeding. Crop Sci. https://doi.org/10.2135/cropsci2016.10.0855

  • Wheat CW (2010) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138:433–451

    Article  CAS  PubMed  Google Scholar 

  • Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL (2005) Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Report 23:155–165

    Article  CAS  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL× treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Yan J, Crouch J, Warburton M (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin (English edition) 46:854–861

    CAS  Google Scholar 

  • Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZM, Zhao MJ, Rong TZ, Pan GT, Original L (2007) SSR linkage map onstruction and QTL identification for plant height and ear height in maize (Zea mays L.) Zuo Wu Xue Bao 33:341–344

    CAS  Google Scholar 

  • Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A et al (2009) A genome-wide characterization of MicroRNA genes in maize. PLoS Genet 5:e1000716. https://doi.org/10.1371/journal.pgen.1000716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Cui LN, Meng JJ, Zhang HY, Shi DY, Dong ST et al (2012) Effects of partial root excision on the growth, photosynthesis, and antioxidant enzyme activities of maize under salt stress. J Appl Ecol 23:3377–3384

    CAS  Google Scholar 

  • Zhang H, Cui FA, Wang LIN, Li JUN, Ding A, Zhao C et al (2013) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92:213–231

    Article  PubMed  Google Scholar 

  • Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, et al (2014) Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9.c

    Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10

    Google Scholar 

  • Zhao YL, Wang HM, Shao BX, Chen W, Guo ZJ, Gong HY et al (2016) SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.) Genet Mol Res 15(2)

    Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu J-K et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci 105:4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) Plant Cell Environ 33:740–749

    PubMed  Google Scholar 

  • Zörb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Article  CAS  Google Scholar 

  • Zygalakis KC, Kirk GJD, Jones DL, Wissuwa M, Roose T (2011) A dual porosity model of nutrient uptake by root hairs. New Phytol 192:676–688

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MTI is thankful to the World Bank for funding to this work by a sub-project CP#2071 of Higher Education Quality Enhancement Project of University Grants Commission of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, M.S., Billah, M., Hossain, N., Bagum, S.A., Islam, M.T. (2018). Omics-Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.). In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_9

Download citation

Publish with us

Policies and ethics