Skip to main content

Bacterial Polyhydroxyalkanoates: Recent Trends in Production and Applications

  • Chapter
  • First Online:
Recent advances in Applied Microbiology

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers accumulated in microorganisms as intracellular carbon and energy reserve, which are utilized when the external carbon supply is limited. PHAs have gained popularity as ‘green polymers’ which can be a substitute for petroleum-derived plastics due to their plastic-like properties, possibility to produce from renewable resources, and complete biodegradability in environment. The high production cost is the main hindrance to the wide spread use of these materials. Research is progressing with an aim to produce PHAs from cheap and easily available carbon sources and from waste materials and thereby make them economically competitive with conventional plastics. This review is focused on recent advances in the field of bacterial production of polyhydroxyalkanoates and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnew DE, Stevermer AK, Youngquist JT et al (2012) Engineering Escherichia coli for production of C 12–C 14 polyhydroxyalkanoate from glucose. Metab Eng 14(6):705–713

    Article  CAS  PubMed  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743

    Article  CAS  Google Scholar 

  • Akaraonye E, Moreno C, Knowles JC et al (2012) Poly (3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 7(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Aldor IS, Kim S-W, Prather KLJ et al (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol 68(8):3848–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsafadi D, Al-Mashaqbeh O (2016) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol. doi:http://dx.doi.org/10.1016/j.nbt.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  • Amache R, Sukan A, Safari M et al (2013) Advances in PHAs production. Chem Eng 32. doi:10.3303/CET1332156

  • Amara AA, Bernd H (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374(2):413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos DA, McInerney MJ (1993) Formation of D-3-hydroxybutyryl-coenzyme A by an acetoacetyl-coenzyme A reductase in Syntrophomonas wolfei subsp. wolfei. Arch Microbiol 159(1):16–20

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly (hydroxyalkanoates). Int J Biol Macromol 12(2):102–105

    Article  CAS  PubMed  Google Scholar 

  • Andreeßen B, Lange AB, Robenek H et al (2010) Conversion of glycerol to poly (3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76(2):622–626

    Article  PubMed  CAS  Google Scholar 

  • Arifin Y, Sabri S, Sugiarto H et al (2011) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxybutyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 156(4):275–278

    Article  CAS  PubMed  Google Scholar 

  • Aziz NA, Sipaut CS, Abdullah AAA (2012) Improvement of the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. J Chem Technol Biotechnol 87(11):1607–1614

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Pramanik A, Maji SK et al (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(34):189. doi:10.1186/2191-0855-2-34

    Article  CAS  Google Scholar 

  • Bian Y-Z, Wang Y, Aibaidoula G et al (2009) Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Brzostowicz P, Blasko M, Rouvière P (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58(6):781–789

    Article  CAS  PubMed  Google Scholar 

  • Budde CF, Mahan AE, Lu J et al (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192(20):5319–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canadas RF, Cavalheiro JM, Guerreiro JD et al (2014) Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int J Biol Macromol 71:131–140

    Article  CAS  PubMed  Google Scholar 

  • Castilho LR, Mitchell DA, Freire DM (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100(23):5996–6009

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria natural functions and applications. Springer, Berlin Heidelberg, pp 17–37

    Chapter  Google Scholar 

  • Chen G-Q, Hajnal I (2015) The ‘PHAome’. Trends Biotechnol 33(10):559–564

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomater 8(2):540–548

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Wang Q, Wei G et al (2011) Production in Escherichia coli of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol 77(14):4886–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B-Y, Hung J-Y, Shiau T-J et al (2013) Exploring two-stage fermentation strategy of polyhydroxyalkanoate production using Aeromonas hydrophila. Biochem Eng J 78:80–84

    Article  CAS  Google Scholar 

  • Chen G-Q, Hajnal I, Wu H et al (2015a) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33(10):565–574

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Huang L, Wen Q et al (2015b) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75

    Article  CAS  PubMed  Google Scholar 

  • Chien C-C, Hong C-C, Soo P-C et al (2010) Functional expression of phaCAB genes from Cupriavidus taiwanensis strain 184 in Escherichia coli for polyhydroxybutyrate production. Appl Biochem Biotechnol 162(8):2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Chohan SN, Copeland L (1998) Acetoacetyl coenzyme A reductase and polyhydroxybutyrate synthesis in Rhizobium (Cicer) sp. strain CC 1192. Appl Environ Microbiol 64(8):2859–2863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MH, Yoon SC, Lenz RW (1999) Production of poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly (4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 65(4):1570–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC Press, Boca Raton

    Google Scholar 

  • Cobntbekt J, Mabchessault R (1972) Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J Mol Biol 71(3):735–756

    Article  Google Scholar 

  • Cui B, Huang S, Xu F et al (2015) Improved productivity of poly (3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 99(14):6009–6019

    Article  CAS  PubMed  Google Scholar 

  • Dai Z-W, Zou X-H, Chen G-Q (2009) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30(17):3075–3083

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Kataria R, Cerrone F et al (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209

    Article  CAS  PubMed  Google Scholar 

  • Dawes EA, Senior PJ (1972) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266

    Article  Google Scholar 

  • de Almeida A, Giordano AM, Nikel PI et al (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76(6):2036–2040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doi Y, Tamaki A, Kunioka M et al (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotechnol 28(4–5):330–334

    Article  CAS  Google Scholar 

  • Dong CL, Webb WR, Peng Q et al (2015) Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. J Biomed Mater Res A 103(1):282–288

    Article  PubMed  CAS  Google Scholar 

  • Erdal E, Kavaz D, Şam M et al (2012) Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J Biomed Nanotechnol 8(5):800–808

    Article  CAS  PubMed  Google Scholar 

  • Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 9(2–4):231–235

    Article  CAS  PubMed  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm BH (2000) PhaG-mediated synthesis of poly (3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66(5):2117–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Follonier S, Henes B, Panke S et al (2012) Putting cells under pressure: a simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol Bioeng 109(2):451–461

    Article  CAS  PubMed  Google Scholar 

  • Francis L, Meng D, Knowles J et al (2011) Controlled delivery of gentamicin using poly (3-hydroxybutyrate) microspheres. Int J Mol Sci 12(7):4294–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu N, Deng S, Fu Y et al (2014) Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Prolif 47(5):465–475

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Sharma P, Spicer V et al (2015) Quantitative ‘Omics analyses of medium chain length polyhydroxyalkanaote metabolism in Pseudomonas putida LS46 cultured with waste glycerol and waste fatty acids. PLoS One 10 (11):e0142322. doi:http://dx.doi.org/10.1371/journal.pone.0142322

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Ito M, Saito T et al (1987) Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Biochim Biophys Acta Biochim Biophys Acta 917(3):365–371

    CAS  PubMed  Google Scholar 

  • Gahlawat G, Srivastava AK (2012) Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Maehara A, Yamane T et al (2001) Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiol Lett 196(2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Yuan X-X, Shi Z-Y et al (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb Cell Factories 11(1):1–10. doi:10.1186/1475-2859-11-130

    Article  CAS  Google Scholar 

  • García A, Segura D, Espín G et al (2014) High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 82:117–123

    Article  CAS  Google Scholar 

  • Griebel R, Smith Z, Merrick J (1968) Metabolism of poly (β-hydroxybutyrate). I. Purification, composition, and properties of native poly (β-hydroxybutyrate) granules from Bacillus megaterium. Biochemistry 7(10):3676–3681

    Article  CAS  PubMed  Google Scholar 

  • Grothe E, Chisti Y (2000) Poly (β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22(5):441–449

    Article  CAS  Google Scholar 

  • Gumel A, Annuar M, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605

    Article  CAS  Google Scholar 

  • Ha C-S, Cho W-J (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27(4):759–809

    Article  CAS  Google Scholar 

  • Hahn SK, Chang YK, Lee SY (1995) Recovery and characterization of poly (3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl Environ Microbiol 61(1):34–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haywood G, Anderson A, Dawes E (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57(1):1–6

    Article  CAS  Google Scholar 

  • Hocking PJ, Marchessault RH (1994) Biopolyesters. In: Griffin GJ (ed) Chemistry and technology of biodegradable polymers. Blackie academic & professional, London, pp 48–96

    Chapter  Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm BH (2000) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann N, Amara AA, Beermann BB et al (2002) Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP: CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem 277(45):42926–42936

    Article  CAS  PubMed  Google Scholar 

  • Holmes P (1988) Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers. In: Developments in crystalline polymers. Springer, Dordrecht, pp 1–65

    Google Scholar 

  • Horng YT, Chang KC, Chien CC et al (2010) Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose PBAD promoter in Escherichia coli. Lett Appl Microbiol 50(2):158–167

    Article  CAS  PubMed  Google Scholar 

  • Horng Y-T, Chien C-C, Huang C-T et al (2013) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with co-expressed propionate permease (prpP), beta-ketothiolase B (bktB), and propionate-CoA synthase (prpE) in Escherichia coli. Biochem Eng J 78:73–79

    Article  CAS  Google Scholar 

  • Huijberts G, de Rijk TC, de Waard P et al (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume AR, Nikodinovic-Runic J, O’Connor KE (2009) FadD from Pseudomonas putida CA-3 is a true long-chain fatty acyl coenzyme A synthetase that activates phenylalkanoic and alkanoic acids. J Bacteriol 191(24):7554–7565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MH, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly (3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76(23):7890–7895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insomphun C, Kobayashi S, Fujiki T et al (2016) Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli. AMB Express 6(1):1–8. doi:10.1186/s13568-016-0200-5

    Article  CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of Polyhydroxyalkanoates. Annu Rev Microbiol 56(1):403–432

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Luo X, Zhou N-Y (2015) Two Polyhydroxyalkanoate synthases from distinct classes from the aromatic degrader Cupriavidus pinatubonensis JMP134 exhibit the same substrate preference. PLoS One 10 (11):e0142332. doi:http://dx.doi.org/10.1371/journal.pone.0142332

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y et al (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31(2):55–67

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Wang Q, Zhang H et al (2008) Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Du L, Kang J et al (2011) Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Bioresour Technol 102(11):6600–6604

    Article  CAS  PubMed  Google Scholar 

  • Kanjanachumpol P, Kulpreecha S, Tolieng V et al (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst Eng 36(10):1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29(2):157–172

    Article  CAS  Google Scholar 

  • Kaur G, Srivastava A, Chand S (2012) Advances in biotechnological production of 1, 3-propanediol. Biochem Eng J 64:106–118

    Article  CAS  Google Scholar 

  • Keenan TM, Tanenbaum SW, Stipanovic AJ et al (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and Levulinic acid. Biotechnol Prog 20(6):1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  • Kılıçay E, Demirbilek M, Türk M et al (2011) Preparation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44(3):310–320

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Lee SY, Chang HN (1992) Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14(9):811–816

    Article  CAS  Google Scholar 

  • Kim E-J, Son HF, Kim S et al (2014a) Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Biochem Biophys Res Commun 444(3):365–369

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Chang JH, Kim E-J et al (2014b) Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochem Biophys Res Commun 443(3):783–788

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Oh YH, Jang Y-A et al (2016) Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly (3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb Cell Factories 15(1):1–13. doi:10.1186/s12934-016-0495-6

    Article  CAS  Google Scholar 

  • Kirk RG, Ginzburg M (1972) Ultrastructure of two species of Halobacterium. J Ultrastruct Res 41(1–2):80–94

    Article  CAS  PubMed  Google Scholar 

  • Kshirsagar PR, Suttar R, Nilegaonkar SS et al (2013) Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J Biochem Technol 4(1):512–517

    Google Scholar 

  • Kulkarni S, Kanekar P, Nilegaonkar S et al (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate)(PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresour Technol 101(24):9765–9771

    Article  CAS  PubMed  Google Scholar 

  • Łabużek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90(3):353–357

    Article  PubMed  Google Scholar 

  • Lau N-S, Chee J-Y, Tsuge T et al (2010) Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM (JCM15050). Bioresour Technol 101(20):7916–7923

    Article  CAS  PubMed  Google Scholar 

  • Le Meur S, Zinn M, Egli T et al (2013) Poly (4-hydroxybutyrate)(P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Factories 12(1):1–11. doi:10.1186/1475-2859-12-123

    Article  CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jeon E, Yun HS et al (2011) Improvement of fatty acid biosynthesis by engineered recombinant Escherichia coli. Biotechnol Bioprocess Eng 16(4):706–713

    Article  CAS  Google Scholar 

  • Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  • Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879

    Article  CAS  PubMed  Google Scholar 

  • Li R, Chen Q, Wang PG et al (2007) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75(5):1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Li XT, Sun J, Chen S et al (2008) In vitro investigation of maleated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for its biocompatibility to mouse fibroblast L929 and human microvascular endothelial cells. J Biomed Mater Res A 87(3):832–842

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Chen Q, Li M-J et al (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotechnol 28(1):92–95

    Article  CAS  Google Scholar 

  • Li X, Chang H, Luo H et al (2015) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A 103(3):1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Li T, Ye J, Shen R et al (2016) Semi-rational approach for ultra-high poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol. doi:10.1021/acssynbio.6b00083

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly (3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209(1):135–150

    Article  CAS  PubMed  Google Scholar 

  • Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly (β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56(8):2517–2521

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang S, Zhang Y et al (2014) Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci 26(7):1453–1462

    Article  CAS  Google Scholar 

  • Lomas AJ, Webb WR, Han J et al (2013) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods 19(8):577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Cuellar M, Alba-Flores J, Rodríguez JG et al (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48(1):74–80

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Zhang J, Wu Q et al (2003) Enhanced production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Wu Q, Zhang WJ et al (2004) Molecular cloning of polyhydroxyalkanoate synthesis operon from Aeromonas hydrophila and its expression in Escherichia coli. Biotechnol Prog 20(5):1332–1336

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Zhang Y, Wang L (2010) Preparation and in vitro drug-release behavior of 5-fluorouracil-loaded poly (hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and microparticles. J Appl Polym Sci 116(5):2944–2950

    CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manchak J, Page WJ (1994) Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140(4):953–963

    Article  CAS  Google Scholar 

  • Mansfield DA, Anderson AJ, Naylor LA (1995) Regulation of PHB metabolism in Alcaligenes eutrophus. Can J Microbiol 41(13):44–49

    Article  CAS  Google Scholar 

  • Masaeli E, Wieringa PA, Morshed M et al (2014) Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomed Nanotechnol Biol Med 10(7):1559–1569

    Article  CAS  Google Scholar 

  • Masamune S, Palmer MA, Gamboni R et al (1989a) Bio-Claisen condensation catalyzed by thiolase from Zoogloea ramigera. Active site cysteine residues. J Am Chem Soc 111(5):1879–1881

    Article  CAS  Google Scholar 

  • Masamune S, Walsh C, Sinskey A et al (1989b) Poly-(R)-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl Chem 61(3):303–312

    Article  CAS  Google Scholar 

  • Masood F, Chen P, Yasin T et al (2013) Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C Mater Biol Appl 33(3):1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Masood F, Yasin T, Hameed A (2015) Polyhydroxyalkanoates–what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35(4):514–521

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Matsusaki H, Taguchi S et al (2001) Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2(1):142–147

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Tanaka Y, Watanabe T et al (2013) Directed evolution and structural analysis of NADPH-dependent Acetoacetyl coenzyme A (Acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Appl Environ Microbiol 79(19):6134–6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Mauclaire L, Brombacher E, Bünger J et al (2010) Factors controlling bacterial attachment and biofilm formation on medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces 76(1):104–111

    Article  CAS  PubMed  Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183(14):4235–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejía M, Segura D, Espín G et al (2010) Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-β-hydroxybutyrate (PHB) synthesis. J Appl Microbiol 108(1):55–61

    Article  PubMed  CAS  Google Scholar 

  • Mendes JBE, Riekes MK, de Oliveira VM et al (2012) PHBV/PCL microparticles for controlled release of resveratrol: physicochemical characterization, antioxidant potential, and effect on hemolysis of human erythrocytes. Sci World J 2012. doi:http://dx.doi.org/10.1100/2012/542937

    Article  Google Scholar 

  • Meng D-C, Shi Z-Y, Wu L-P et al (2012) Production and characterization of poly (3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14(4):317–324

    Article  CAS  PubMed  Google Scholar 

  • Mercan N, Beyatli Y (2005) Production of poly-beta-hydroxybutyrate (PHB) by Rhizobium meliloti, R. viciae and Bradyrhizobium japonicum with different carbon and nitrogen sources, and inexpensive substrates. Zuckerindustrie 130(5):410–415

    CAS  Google Scholar 

  • Merrick J, Doudoroff M (1964) Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system. J Bacteriol 88(1):60–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miková G, Chodák I (2006) Properties and modification of poly(3-hydroxybutanoate). Chem List 100(12):1075–1083

    Google Scholar 

  • Mittendorf V, Robertson EJ, Leech RM et al (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc Natl Acad Sci U S A 95(23):13397–13402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7(10):1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297(5):1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz T, Yahaya NA, Abd-Aziz S et al (2010) Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent–a Malaysian perspective. J Clean Prod 18(14):1393–1402

    Article  CAS  Google Scholar 

  • Narayanan A, Ramana KV (2012) Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3. Biotech 2(4):287–296

    Google Scholar 

  • Nath A, Dixit M, Bandiya A et al (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 99(13):5749–5755

    Article  CAS  PubMed  Google Scholar 

  • Ng K-S, Wong Y-M, Tsuge T et al (2011) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochem 46(8):1572–1578

    Article  CAS  Google Scholar 

  • Nikel PI, de Almeida A, Melillo EC et al (2006) New recombinant Escherichia coli strain tailored for the production of poly (3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikel PI, Giordano AM, de Almeida A et al (2010) Elimination of D-lactate synthesis increases poly (3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microbiol 76(22):7400–7406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Nakai K, Miyake M et al (2001) Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnol Lett 23(14):1095–1099

    Article  CAS  Google Scholar 

  • Nomura CT, Taguchi K, Taguchi S et al (2004a) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70(2):999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura CT, Tanaka T, Gan Z et al (2004b) Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-Ketoacyl-acyl-carrier-protein synthase III (f abH) and polyhydroxyalkanoate synthesis genes. Biomacromolecules 5(4):1457–1464

    Article  CAS  PubMed  Google Scholar 

  • Nomura CT, Taguchi K, Gan Z et al (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71(8):4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normi YM, Hiraishi T, Taguchi S et al (2005) Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly (3-hydroxybutyrate) biosynthesis in Escherichia coli. Macromol Biosci 5(3):197–206

    Article  CAS  PubMed  Google Scholar 

  • Novikov LN, Novikova LN, Mosahebi A et al (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16):3369–3376

    Article  CAS  PubMed  Google Scholar 

  • Obruca S, Marova I, Melusova S et al (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61(4):947–953

    Article  CAS  Google Scholar 

  • Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24

    Article  CAS  Google Scholar 

  • Okamura K, Marchessault R (1967) X-ray structure of poly-β-hydroxybutyrate. In: Ramachandran G (ed) Conformation of biopolymers, vol 2, pp 709–720. doi:10.1016/B978-1-4832-2843-3.50023-6

    Chapter  Google Scholar 

  • Ouyang S-P, Luo RC, Chen S-S et al (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8(8):2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Palmer M, Differding E, Gamboni R et al (1991) Biosynthetic thiolase from Zoogloea ramigera. Evidence for a mechanism involving Cys-378 as the active site base. J Biol Chem 266(13):8369–8375

    CAS  PubMed  Google Scholar 

  • Panda B, Sharma L, Mallick N (2005) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. J Plant Physiol 162(12):1376–1379

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2004) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 114(1–3):335–346

    Article  Google Scholar 

  • Park SJ, J-i C, Lee SY (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzym Microb Technol 36(4):579–588

    Article  CAS  Google Scholar 

  • Peña C, Castillo T, García A et al (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7(4):278–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng S-W, Guo X-Y, Shang G-G et al (2011) An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials 32(10):2546–2555

    Article  CAS  PubMed  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264(26):15298–15303

    CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Phithakrotchanakoon C, Champreda V, S-i A et al (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77(6):1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147(12):3353–3358

    Article  CAS  PubMed  Google Scholar 

  • Quillaguaman J, Hashim S, Bento F et al (2005) Poly (β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99(1):151–157

    Article  CAS  PubMed  Google Scholar 

  • Raberg M, Bechmann J, Brandt U et al (2011) Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex. Appl Environ Microbiol 77(7):2254–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R, Keshavarz T, Roether J et al (2011a) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 72(3):29–47

    Article  CAS  Google Scholar 

  • Rai R, Yunos DM, Boccaccini AR et al (2011b) Poly-3-hydroxyoctanoate P (3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 12(6):2126–2136

    Article  CAS  PubMed  Google Scholar 

  • Rao U, Sridhar R, Sehgal P (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20

    Article  CAS  Google Scholar 

  • Rathbone S, Furrer P, Lübben J et al (2010) Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res A 93(4):1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Reddy MV, Nikhil G, Mohan SV et al (2012) Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents. Bioresour Technol 123:471–479

    Article  CAS  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BH (2015) Polyhydroxyalkanoates. http://lipidlibrary.aocs.org/Biochemistry/content.cfm?Item Number=41298. Accessed 25 Feb 2016

  • Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Rehm BH, Qingsheng Q, Beermann BB et al (2001) Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem J 358(1):263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BH, Antonio RV, Spiekermann P et al (2002) Molecular characterization of the poly (3-hydroxybutyrate)(PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594(1):178–190

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Sierro N, Witholt B et al (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182(10):2978–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, De Roo G, Van Beilen JB et al (2005) Poly (3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 69(3):286–292

    Article  CAS  PubMed  Google Scholar 

  • Reusch RN (1995) Low molecular weight complexed poly (3-hydroxybutyrate): a dynamic and versatile molecule in vivo. Can J Microbiol 41(13):50–54

    Article  CAS  PubMed  Google Scholar 

  • Ritchie G, Senior P, Dawes E (1971) The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii. Biochem J 121(2):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha RC, da Silva LF, Taciro MK et al (2008) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) with a broad range of 3HV content at high yields by Burkholderia sacchari IPT 189. World J Microbiol Biotechnol 24(3):427–431

    Article  CAS  Google Scholar 

  • Ruan W, Chen J, Lun S (2003) Production of biodegradable polymer by A. eutrophus using volatile fatty acids from acidified wastewater. Process Biochem 39(3):295–299

    Article  CAS  Google Scholar 

  • Saito T, Fukui T, Ikeda F et al (1977) An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera. Arch Microbiol 114(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Sathiyanarayanan G, Kiran GS, Selvin J et al (2013) Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol 60:253–261

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Kanazawa H, Tsuge T (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 90(3):951–959

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Mino T, Matsuo T (1999) PHA production by activated sludge. Int J Biol Macromol 25(1):105–109

    Article  CAS  PubMed  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes eutrophus poly (3-hydroxybutyrate) biosynthetic operon: identification of the N terminus of poly (3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173(1):168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabna A, Saranya V, Malathi J et al (2014) Indigenously produced polyhydroxyalkanoate based co-polymer as cellular supportive biomaterial. J Biomed Mater Res A 102(10):3470–3476

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Naseer MI, Choi MH et al (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharm 400(1):165–175

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Ullah N, Choi MH et al (2012) Amorphous amphiphilic P (3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur J Pharm Biopharm 80(3):518–527

    Article  CAS  PubMed  Google Scholar 

  • Shimamura E, Kasuya K, Kobayashi G et al (1994a) Physical properties and biodegradability of microbial poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 27(3):878–880

    Article  CAS  Google Scholar 

  • Shimamura E, Scandola M, Doi Y (1994b) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules 27(16):4429–4435

    Article  CAS  Google Scholar 

  • Shuto H, Fukul T, Saito T et al (1981) An NAD-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Eur J Biochem 118(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Silviya N, Binod P et al (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72

    Article  CAS  Google Scholar 

  • Singh A, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357

    Article  CAS  PubMed  Google Scholar 

  • Slater SC, Voige W, Dennis D (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater S, Houmiel KL, Tran M et al (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Biomaterials. Springer, pp 123–213

    Chapter  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228

    Article  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96

    Article  CAS  Google Scholar 

  • Su Z, Li P, Wu B et al (2014) PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering. Mater Sci Eng C Mater Biol Appl 45:374–382

    Article  CAS  PubMed  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S et al (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-a review. Biotechnol Adv 25(2):148–175

    Article  CAS  PubMed  Google Scholar 

  • Tan G-YA, Chen C-L, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754

    Article  CAS  Google Scholar 

  • Thompson S, Mayerl F, Peoples OP et al (1989) Mechanistic studies on. Beta.-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28(14):5735–5742

    Article  CAS  PubMed  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa S, Hyakutake M, Saito Y et al (2011) Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC subunit of PHA synthase from Bacillus cereus YB-4 in recombinant Escherichia coli. Biomacromolecules 12(7):2660–2666

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AD, Srivastava SK, Singh RP (2013) Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp. Biomass Bioenergy 55:243–250

    Article  CAS  Google Scholar 

  • Tsuge T, Taguchi K, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid ß-oxidation. Int J Biol Macromol 31(4):195–205

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99(15):6231–6240

    Article  CAS  PubMed  Google Scholar 

  • Urtuvia V, Villegas P, González M et al (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  PubMed  Google Scholar 

  • Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Steinbüchel A (1995) Accumulation of poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polymer Degradation 3(3):169–175

    Article  CAS  Google Scholar 

  • Vigneswari S, Nik LA, Majid M et al (2010) Improved production of poly (3-hydroxybutyrate-co-4-hydroxbutyrate) copolymer using a combination of 1, 4-butanediol and γ-butyrolactone. World J Microbiol Biotechnol 26(4):743–746

    Article  CAS  Google Scholar 

  • Wang F, Lee SY (1997) Production of poly (3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63(12):4765–4769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Bian Y-Z, Wu Q et al (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang H-h, X-t L, Chen G-Q (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44(1):106–111

    Article  CAS  Google Scholar 

  • Wang L, Wang Z-H, Shen C-Y et al (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31(7):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Gan Y, Qu J et al (2012a) Application of Electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate]-Ecoflex Mats in periodontal regeneration: a primary study. Paper presented at the Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology

    Google Scholar 

  • Wang Q, Tappel RC, Zhu C et al (2012b) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78(2):519–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Sharma-Shivappa RR, Olson JW et al (2013a) Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind Crop Prod 43:802–811

    Article  CAS  Google Scholar 

  • Wang Y, Chen R, Cai J et al (2013b) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS One 8(4):e60318. doi:http://dx.doi.org/10.1371/journal.pone.0060318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, He X-Q, Jin T et al (2016) Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther 7(1):1–13. doi:10.1186/s13287-016-0277-4

    Article  CAS  Google Scholar 

  • Webb WR, Dale TP, Lomas AJ et al (2013) The application of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials 34(28):6683–6694

    Article  CAS  PubMed  Google Scholar 

  • Witkowski A, Joshi AK, Smith S (1997) Characterization of the interthiol acyltransferase reaction catalyzed by the β-ketoacyl synthase domain of the animal fatty acid synthase. Biochemistry 36(51):16338–16344

    Article  CAS  PubMed  Google Scholar 

  • Wodzinska J, Snell K, Rhomberg A et al (1996) Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118(26):6319–6320

    Article  CAS  Google Scholar 

  • Xie WP, Chen G-Q (2008) Production and characterization of terpolyester poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38(3):384–389

    Article  CAS  Google Scholar 

  • Xie H, Li J, Li L et al (2013) Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 9(8):7845–7854

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y-C, Yao Y-C, Zhan X-Y et al (2010) Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed 21(1):127–140

    Article  CAS  PubMed  Google Scholar 

  • Xu X-Y, Li X-T, Peng S-W et al (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 31(14):3967–3975

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Huang S, Liu Y et al (2014) Comparative study on the production of poly (3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 98(9):3965–3974

    Article  CAS  PubMed  Google Scholar 

  • Yabutani T, Maehara A, Ueda S et al (1995) Analysis of β-ketothiolase and acetoacetyl-CoA reductase genes of a methylotrophic bacterium, Paracoccus denitrifleans, and their expression in Escherichia coli. FEMS Microbiol Lett 133(1–2):85–90

    CAS  PubMed  Google Scholar 

  • Ying TH, Ishii D, Mahara A et al (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29(10):1307–1317

    Article  CAS  PubMed  Google Scholar 

  • You M, Peng G, Li J et al (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313

    Article  CAS  PubMed  Google Scholar 

  • Yuan M-Q, Shi Z-Y, Wei X-X et al (2008) Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett 283(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhao L, Dong Y et al (2010) Folate-mediated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 76(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun W, Wang H et al (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147:307–314

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang Z, Zhao L (2015a) Folate-decorated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Deliv:1–8

    Google Scholar 

  • Zhang W, Chen C, Cao R et al (2015b) Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications. Chembiochem 16(1):156–166

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Zhang M-J, Zhang G et al (2004) Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene. Antonie Van Leeuwenhoek 85(2):93–101

    Article  CAS  PubMed  Google Scholar 

  • Zheng LZ, Li Z, Tian H-L et al (2005) Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein: coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiol Lett 252(2):299–307

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Shi Z-Y, Meng D-C et al (2011) Production of 3-hydroxypropionate homopolymer and poly (3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 13(6):777–785

    Article  CAS  PubMed  Google Scholar 

  • Zhu XH, Wang CH, Tong YW (2007) Growing tissue-like constructs with Hep3B/HepG2 liver cells on PHBV microspheres of different sizes. J Biomed Mater Res B Appl Biomater 82(1):7–16

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Chiu S, Nakas JP et al (2013) Bioplastics from waste glycerol derived from biodiesel industry. J Appl Polym Sci 130(1):1–13

    Article  CAS  Google Scholar 

  • Zhuang Q, Wang Q, Liang Q et al (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Del Rev 53(1):5–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. M. Radhakrishna Pillai, Director, RGCB, for the facilities provided. We acknowledge the financial support from Department of Biotechnology, Govt. of India, and Council of Scientific and Industrial Research (CSIR), India (SRF; 09/716(0149)/2012-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Krishnan Kumarapillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishna Pillai, A., Kumarapillai, H.K. (2017). Bacterial Polyhydroxyalkanoates: Recent Trends in Production and Applications. In: Shukla, P. (eds) Recent advances in Applied Microbiology . Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_2

Download citation

Publish with us

Policies and ethics