Skip to main content
Log in

Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the application of engineered Escherichia coli in industrial polyhydroxybutyrate production process, one of the major concerns is the induction of the metabolic pathway. In this study, we developed a stress-induced system by which the PHB biosynthesis pathways can be induced under stress conditions. Fermentation results showed that recombinant E. coli DH5α (pQKZ103) harboring this system was able to accumulate polyhydroxybutyrate up to 85.8% of cell dry weight in minimal glucose medium without adding any inducer. Growth experiment with GFP as a reporter indicated that the induction of this system happened at the late exponential phase and was sensitive to stressed environment. This system can also be applied in many other biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beshay U, Miksch G, Friehs K, Flaschel E (2007) Increasing the secretion ability of the kil gene for recombinant proteins in Escherichia coli by using a strong stationary-phase promoter. Biotechnol Lett 29:1893–1901

    CAS  PubMed  Google Scholar 

  • Brown L, Elliott T (1997) Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J Bacteriol 179:656–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Lee SY (1999) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553

    CAS  PubMed  Google Scholar 

  • Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 9:231–235

    CAS  PubMed  Google Scholar 

  • Fischer D, Teich A, Neubauer P, Hengge-Aronis R (1998) The general stress sigma factor sigmaS of Escherichia coli is induced during diauxic shift from glucose to lactose. J Bacteriol 180:6203–6206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge-Aronis R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148–152

    CAS  PubMed  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma (S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch M, Elliott T (2005) Stationary-phase regulation of RpoS translation in Escherichia coli. J Bacteriol 187:7204–7213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen F, Bally M, Chapon-Herve V, Michel G, Lazdunski A, Williams P, Stewart GS (1999) RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145(Pt 4):835–844

    CAS  PubMed  Google Scholar 

  • Lange R, Hengge-Aronis R (1994) The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612

    CAS  PubMed  Google Scholar 

  • Lease RA, Belfort M (2000) Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol 38:667–672

    CAS  PubMed  Google Scholar 

  • Lease RA, Smith D, McDonough K, Belfort M (2004) The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli. J Bacteriol 186:6179–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lease RA, Woodson SA (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223

    CAS  PubMed  Google Scholar 

  • Lee SY (1996) Poly(3-hydroxybutyrate) extrusion by cells of recombinant Escherichia coli. J Microbiol Biotechnol 6:147–149

    CAS  Google Scholar 

  • Lee SY, Yim KS, Chang HN, Chang YK (1994) Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol 32:203–211

    CAS  PubMed  Google Scholar 

  • Li R, Chen Q, Wang PG, Qi Q (2007a) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75:1103–1109

    CAS  PubMed  Google Scholar 

  • Li R, Zhang H, Qi Q (2007b) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320

    CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 95:12462–12467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A, Twellmann T, Nattkemper TW (2005) Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J Biotechnol 120:25–37

    CAS  PubMed  Google Scholar 

  • Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A et al (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31–44

    CAS  PubMed  Google Scholar 

  • Muffler A, Barth M, Marschall C, Hengge-Aronis R (1997) Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J Bacteriol 179:445–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranquet C, Gottesman S (2007) Translational regulation of the Escherichia coli stress factor RpoS: a role for SsrA and Lon. J Bacteriol 189:4872–4879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Repoila F, Majdalani N, Gottesman S (2003) Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48:855–861

    CAS  PubMed  Google Scholar 

  • Resch A, Afonyushkin T, Lombo TB, McDowall KJ, Blasi U, Kaberdin VR (2008) Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the rpoS 5′-leader. RNA 14:1–6

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning:a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sharfstein ST, Van Dien SJ, Keasling JD (1996) Modulation of the phosphate-starvation response in Escherichia coli by genetic manipulation of the polyphosphate pathways. Biotechnol Bioeng 51:434–438

    CAS  PubMed  Google Scholar 

  • Shi H, Kyuwa K, Takasu M, Shimizu K (2001) Temperature-induced expression of phb genes in Escherichia coli and the effect of temperature patterns on the production of poly-3-hydroxybutyrate. J Biosci Bioeng 91:21–26

    CAS  PubMed  Google Scholar 

  • Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168–8172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    CAS  PubMed  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    PubMed  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175

    CAS  PubMed  Google Scholar 

  • Taschner NP, Yagil E, Spira B (2004) A differential effect of sigmaS on the expression of the PHO regulon genes of Escherichia coli. Microbiology 150:2985–2992

    CAS  PubMed  Google Scholar 

  • Valentin-Hansen P, Eriksen M, Udesen C (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51:1525–1533

    CAS  PubMed  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    CAS  PubMed  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Gottesman S (1998) Regulation of proteolysis of the stationary-phase sigma factor RpoS. J Bacteriol 180:1154–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15:627–637

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National High-Tech Research and Development Plan of China (2006AA02Z218) and National Basic Research Program of China (2007CB707803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z., Wang, Q., Zhang, H. et al. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79, 203–208 (2008). https://doi.org/10.1007/s00253-008-1428-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1428-z

Keywords

Navigation