Skip to main content
Log in

Poly(3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We tested the synthesis and in vitro activity of the poly(3-hydroxyalkanoate) (PHA) polymerase 1 from Pseudomonas putida GPo1 in both P. putida GPp104 and Escherichia coli JMU193. The polymerase encoding gene phaC1 was expressed using the inducible PalkB promoter. It was found that the production of polymerase could be modulated over a wide range of protein levels by varying inducer concentrations. The optimal inducer dicyclopropylketone concentrations for PHA production were at 0.03% (v/v) for P. putida and 0.005% (v/v) for E. coli. Under these concentrations the maximal polymerase level synthesized in the E. coli host (6% of total protein) was about three- to fourfold less than that in P. putida (20%), whereas the maximal level of PHA synthesized in the E. coli host (8% of total cell dry weight) was about fourfold less than that in P. putida (30%). In P. putida, the highest specific activity of polymerase was found in the mid-exponential growth phase with a maximum of 40 U/g polymerase, whereas in E. coli, the maximal specific polymerase activity was found in the early stationary growth phase (2 U/g polymerase). Our results suggest that optimal functioning of the PHA polymerase requires factors or a molecular environment that is available in P. putida but not in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldor AS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    CAS  PubMed  Google Scholar 

  • de Roo G, Ren Q, Witholt B, Kessler B (2000) Development of an improved in vitro activity assay for medium chain length PHA polymerase based on coenzymeA release measurements. J Microbiol Methods 41:1–8

    PubMed  Google Scholar 

  • Diederich L, Roth A, Messer W (1994) A versatile plasmid vector system for the regulated expression of genes in Escherichia coli. BioTechniques 16:916–923

    CAS  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durner RA (1998) Feast and Starvation: accumulation of bioplastic in Pseudomonas oleovorans. PhD thesis, Swiss Federal Institute of Technology Zürich, Zürich

    Google Scholar 

  • Eggink G, Lageveen RG, Altenburg B, Witholt B (1987) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262:17712–17718

    CAS  PubMed  Google Scholar 

  • Elvin CM, Thompson PR, Argall ME, Hendry P, Stamford NP, Lilley PE, and Dixon NE (1990) Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 87:123--126

    CAS  PubMed  Google Scholar 

  • Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 103:231–236

    CAS  Google Scholar 

  • Gerhardt H (1989) Peroxisomes and fatty acid degradation. Methods Enzymol 148:516–525

    Google Scholar 

  • Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(−)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci U S A 92:6279–6283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-beta-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of the PHB granules. J Bacteriol 175:5289–5293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320

    CAS  PubMed  Google Scholar 

  • Giza PE, Huang RC (1989) A self-inducing runaway-replication plasmid expression system utilizing the Rop protein. Gene 78:73–84

    CAS  PubMed  Google Scholar 

  • Han J, Qiu YZ, Liu DC, Chen GQ (2004) Engineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition. FEMS Microbiol Lett 239:195–201

    CAS  PubMed  Google Scholar 

  • Hockney RC (1994) Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol 12:456–463

    CAS  PubMed  Google Scholar 

  • Hoffmann I, Widstrom J, Zeppezauer M, Nyman PO (1987) Overproduction and large-scale preparation of deoxyuridine triphosphate nucleotidohydrolase from Escherichia coli. Eur J Biochem 164:45–51

    CAS  PubMed  Google Scholar 

  • Hrabak O (1992) Carbohydrates in industrial synthesis. In: Clarke MA (ed) Proceedings of the symposium of the division of carbohydrate chemistry of the American Chemical Society. Verlag Dr. Albert Bartens, Berlin, 18–26

    Google Scholar 

  • Huijberts GNM, de Rijk TC, de Waard P, Eggink G (1995) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666

    Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-hydroxyalkanoates is a common feature of fluorescent Pseudomonads. Appl Environ Microbiol 55:1949–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. J Biol Chem 266:2191–2198

    CAS  PubMed  Google Scholar 

  • Kraak MN, Kessler B, Witholt B (1997a) In vitro activities of granule-bound poly[(R)-3-hydroxyalkanoate] polymerase C1 of Pseudomonas oleovorans: development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. Eur J Biochem 250:432–439

    CAS  PubMed  Google Scholar 

  • Kraak MN, Smits THM, Kessler B, Witholt B (1997b) Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol 179:4985–4991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langenbach S, Rehm BHA, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieboer M (1996) Overproduction of a foreign membrane monooxygenase in E. coli: relation to membrane biogenesis. PhD thesis, University of Groningen, Groningen

  • Panke S (1999) Production of (S)-styrene oxide with recombinant bacteria. PhD thesis, Swiss Federal Institute of Technology Zürich, Zürich

  • Potter M, Madkour MH, Mayer F, Steinbuchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiol 148:2413–2426

    CAS  Google Scholar 

  • Qi QS, Steinbüchel A, Rehm BHA (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett 167:89–94

    CAS  PubMed  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    CAS  PubMed  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Sierro N, Witholt B, Kessler B (2000a) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182:2978–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B (2000b) Properties of engineered poly-3-hydroxyalkanoates (PHAs) produced in Escherichia coli recombinants. Appl Environ Microbiol 66:1311–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, de Roo G, Kessler B, Witholt B (2000c) Recovery of active medium-chain-length poly-3-hydroxyalkanoates polymerase from inactive inclusion bodies using ion exchange resin. Biochem J 349:599–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, van Beilen JB, Sierro N, Zinn M, Kessler B, Witholt B (2005) Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation. Antonie van Leeuwenhoek 87:91–100

    CAS  PubMed  Google Scholar 

  • Rhie HG, Dennis D (1995) Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha +Escherichia coli. Appl Environ Microbiol 61:2487–2492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Staijen IE, Hatzimanikatis V, Witholt B (1997) The AlkB monooxygenase of Pseudomonas oleovorans—synthesis, stability and level in recombinant Escherichia coli and the native host. Eur J Biochem 244:462–470

    CAS  PubMed  Google Scholar 

  • Steinbuchel A (2003) Production of rubber-like polymers by microorganisms. Curr Opin Microbiol 6:261–270

    CAS  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Google Scholar 

  • Ueda H, Tabata Y (2003) Polyhydroxyalkanoate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55:501–518

    CAS  PubMed  Google Scholar 

  • Witholt B (1972) Method for isolating mutants overproducing nicotinamide adenine dinucleotide and its precursors. J Bacteriol 109:350–364

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. D. Dennis for providing E. coli strain JMU193, Dr. M. Nieboer for providing plasmid pAlkVSVG1, Prof. S. Panke for providing plasmid pAlkSCm and Prof. H. Ploegh for providing monoclonal antibodies to the VSV G tag. We thank Dr. M. Passarge for preparing partially purified PhaC1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Q., de Roo, G., van Beilen, J.B. et al. Poly(3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida . Appl Microbiol Biotechnol 69, 286–292 (2005). https://doi.org/10.1007/s00253-005-1995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1995-1

Keywords

Navigation