Skip to main content

Production of Sorbitol from Biomass

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Sorbitol is a natural occurring sugar alcohol with a current industrial demand of about 2,000,000 t.year−1 showing its huge worldwide commercial interest, encompassing uses in chemical, food, textiles, pharmaceutical, and health care and cosmetic industries. The current interest for substituting oil derived chemicals by biomass derived ones has boosted the interest in sorbitol production because in 2004 it was identified by US Department of Energy as one of the 12 top chemicals derived from carbohydrates which could be potentially used as platform chemicals for producing valuable chemical intermediates and materials for industry, and inclusion of sorbitol in the listing currently remains. This review analyzes both sorbitol’s current market and its potentiality as a platform chemical. Subsequently, current state of sorbitol production by chemical, electrochemical and biotechnological methods is revised, and includes a key issue for industrial success: its recovery and purification. Finally, some prospects about the direction of future research for overcoming current bottlenecks for further development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller, authors of the BET theory that is the basis for an analysis technique for the measurement of the specific surface area of a material

ATP:

adenosine 5′-triphosphate

ED:

electrodialysis

GFOR:

D-glucose-fructose oxidoreductase

GHSV:

gas hourly space velocity, h1

HRTEM:

high-resolution transmission electron microscopy

NAD+ :

oxidized form of nicotinamide adenine dinucleotide

NADH:

reduced form of nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

NCNT:

nitrogen doped carbon nanotubes

NP:

nanoparticles

RPBR:

continuous recycle packed-bed reactor

TOF:

turnover frequency, s1 or h1

TOS:

time on stream

WHSV:

weight hourly space velocity, h−1

References

  1. Taylor RL. Sorbitol from D-glucose by electrolytic reduction. Chem Met Eng. 1937;44:588–91.

    CAS  Google Scholar 

  2. Werpy T, Petersen G, editors. Top value added chemicals from biomass; Vol. 1: results of screening for potential candidates from sugars and synthesis gas. Oak Ridge: U.S. Department of Energy; 2004.

    Google Scholar 

  3. Bozell JJ, Petersen GR. Technology development for the production of biobased products from Biorefinery carbohydrates – the US department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539–54.

    Article  CAS  Google Scholar 

  4. Grand View Research. Global sorbitol market. https://www.grandviewresearch.com/press-release/global-sorbitol-market (2015). Last accessed 15 May 2016.

  5. Radiant Insights Inc.. Sorbitol market size, price analysis, research report, 2020. http://www.radiantinsights.com/research/sorbitol-market (2015). Last accessed 15 May 2016.

  6. The manufacture and production of valuable products from sorbitol. GB Patent 301655 (1928).

    Google Scholar 

  7. Pappenberger G, Hohmann HP. Industrial production of L-ascorbic acid (vitamin C) and D-isoascorbic acid. Adv Biochem Eng Biotechnol. 2014;143:143–88.

    CAS  PubMed  Google Scholar 

  8. Laird K. Roquette brings world's largest isosorbide production unit on stream. Plastics today. http://www.plasticstoday.com/roquette-brings-worlds-largest-isosorbide-production-unit-stream/85076483422068 (2015). Last accessed 15 May 2016.

  9. Rose M, Palkovits R. Isosorbide as a renewable platform chemical for versatile applications—Quo Vadis? ChemSusChem. 2012;5:167–76.

    Article  CAS  PubMed  Google Scholar 

  10. Bersot JC, Jacquel N, Saint-Loup R, Fuertes P, Rousseau A, Pascault JP, Spitz R, Fenouillot F, Monteil V. Efficiency increase of poly (ethylene terephthalate-co-isosorbide terephthalate) synthesis using bimetallic catalytic systems. Macromol Chem Phys. 2011;212:114–2120.

    Article  Google Scholar 

  11. Ochoa-Gómez JR, Gil-Río S, Maestro-Madurga B, Lorenzo-Ibarreta L, Gómez de Miranda O. Improved method for manufacturing 1,4:3,6-dianhydrohexitol di(alkyl carbonate)s. US Patent Application 20150336978A1 (2015).

    Google Scholar 

  12. Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog Polym Sci. 2010;35:578–622.

    Article  CAS  Google Scholar 

  13. Ionescu M. Polyether polyols for rigid polyurethane foams. In:Chemistry and technology of polyols for polyurethanes. Shawbury: Rapra Technology Limited; 2005. p. 343–4.

    Google Scholar 

  14. DuPont de Nemours. Improvements in or relating to the manufacture of polyhydric alcohols. GB Patent 528064 (1940).

    Google Scholar 

  15. Zhao L, Zhou JH, Sui ZJ, Zhou XG. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst. Chem Eng Sci. 2010;65:30–5.

    Article  CAS  Google Scholar 

  16. Du W-C, Zheng L-P, Shi J-J, Xia S-X, Hou Z-Y. Production of C2 and C3 polyols from D-sorbitol over hydrotalcite-like compounds mediated bi-functional Ni–Mg–Al–Ox catalysts. Fuel Process Technol. 2015;139:86–90.

    Article  CAS  Google Scholar 

  17. Guo X, Guan J, Li B, Wang X, Mu X, Liu H. Conversion of biomass-derived sorbitol to glycols over carbon materials supported Ru-based catalysts. Scientific Reports 5: Article number 16451 (2015).

    Google Scholar 

  18. Ruppert AM, Weinberg K, Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed. 2012;51:2564–601.

    Article  CAS  Google Scholar 

  19. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem. 2016;18:342–59.

    Article  CAS  Google Scholar 

  20. Dusselier M, Wouwe PV, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci. 2013;6:1415–42.

    Article  CAS  Google Scholar 

  21. Ramírez-López C, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Torrecilla-Soria J. Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol. J Chem Technol Biotechnol. 2011;86:867–74.

    Article  Google Scholar 

  22. Huber GW, Dumesic JA. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today. 2006;111:119–32.

    Article  CAS  Google Scholar 

  23. Xi J, Xia Q, Shao Y, Ding D, Yang P, Liu X, Lu G, Wang Y. Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst. Appl Catal B-Environ. 2016;181:699–706.

    Article  CAS  Google Scholar 

  24. Weng Y, Qiu S, Ma L, Liu Q, Ding M, Zhang Q, Zhang Q, Wang T. Jet-fuel range hydrocarbons from biomass-derived sorbitol over Ni-HZSM-5/SBA-15 catalyst. Catalysts. 2015;5:2147–60.

    Article  CAS  Google Scholar 

  25. Müller J, Hoffmann U. Verfahren zur Darstellung von hochwertigen Alkoholen durch katalytische Reduktion von Zuckerarten mit Wasserstof. DE Patent 544 666 (1925).

    Google Scholar 

  26. Müller J, Hoffmann U. Verfahren zur Darstellung von hochwertigen Alkoholen durch katalytische Reduktion von Zuckerarten mit Wasserstof. DE Patent 554 074 (1926).

    Google Scholar 

  27. Gericke D, Ott D, Matveeva VG, Sulman E, Aho A, Murzin DY, Roggan S, Danilova L, Hessel V, Loebg P, Kralisch D. Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of D-glucose hydrogenation. RSC Adv. 2015;5:15898–908.

    Article  CAS  Google Scholar 

  28. Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M, Dusautois C, Clement A, Lefranc C, Lüssem B, Moser M, Peters S. Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2012.

    Google Scholar 

  29. Court J, Damon JP, Masson J, Wierzchowski P. Hydrogenation of D-glucose with bimetallic catalysts (NiM) of Raney type. Stud Surf Sci Catal. 1988;41:189–96.

    Article  CAS  Google Scholar 

  30. Gallezot P, Cerino PJ, Blanc B, Flèche G, Fuertes P. D-glucose hydrogenation on promoted Raney-nickel catalysts. J Catal. 1994;146:93–102.

    Article  CAS  Google Scholar 

  31. Li H, Li H, Deng J-F. D-glucose hydrogenation over Ni–B/SiO2 amorphous alloy catalyst and the promoting effect of metal dopants. Catal Today. 2002;74:53–63.

    Article  CAS  Google Scholar 

  32. Hoffer BW, Crezee E, Devred F, Mooijman PRM, Sloof WG, Kooyman P, van Langeveld AD, Kapteijn F, Moulijn JA. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to d-sorbitol. Appl Catal A-General. 2003;253:437–52.

    Article  CAS  Google Scholar 

  33. Hoffer BW, Crezee E, Mooijman PRM, van Langeveld AD, Kapteijn F, Moulijn JA. Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation D D-glucose. Catal Today. 2003;79–80:35–41.

    Article  Google Scholar 

  34. Kusserow B, Schimpf S, Claus P. Hydrogenation of D-glucose to Sorbitol over Nickel and Ruthenium Catalysts. Adv Synth Catal. 2003;345:289–99.

    Article  CAS  Google Scholar 

  35. Schimpf S, Louis C, Claus P. Ni/SiO2 catalysts prepared with ethylenediamine nickel precursors: Influence of the pretreatment on the catalytic properties in D-glucose hydrogenation. Appl Catal A. 2007;318:45–53.

    Article  CAS  Google Scholar 

  36. Geyer R, Kraak P, Pachulski A, Schödel R. New catalysts for the hydrogenation of D-glucose to sorbitol. Chem Ing Tech. 2012;84:513–6.

    Article  CAS  Google Scholar 

  37. Li S, Chen H, Shen J. Preparation of highly active and hydrothermally stable nickel catalysts. J Colloid Interface Sci. 2016;447:68–76.

    Article  Google Scholar 

  38. Li HX, Wang WJ, Deng JF. D-glucose hydrogenation to sorbitol over a skeletal Ni-P amorphous alloy catalyst (Raney Ni-P). J Catal. 2000;191:257–60.

    Article  CAS  Google Scholar 

  39. Wisniak J, Simon R. Hydrogenation of D-glucose, fructose, and their mixtures. Ind Eng Chem Prod Res Dev. 1979;18:50–7.

    Article  CAS  Google Scholar 

  40. Michel C, Gallezot P. Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl Compounds? ACS Catal. 2015;5:4130–2.

    Article  CAS  Google Scholar 

  41. Guo H, Li H, Zhua J, Ye W, Qiao M, Dai W. Liquid phase D-glucose hydrogenation to d-glucitol over an ultrafine Ru-B amorphous alloy catalyst. J Mol Catal A Chem. 2003;200:213–21.

    Article  CAS  Google Scholar 

  42. Zhang J, Li J-B, Wu S-B, Liu Y. Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res. 2013;52:11799–815.

    Article  CAS  Google Scholar 

  43. Guo X, Wang X, Guan J, Chen X, Qin Z, Mu X, Xian M. Selective hydrogenation of D-D-glucose to D-sorbitol over Ru/ZSM-5 catalysts. Chin J Catal. 2014;35:733–40.

    Article  CAS  Google Scholar 

  44. Mishra DK, Dabbawala AA, Parka JJ, Jhung SH, Hwang J-S. Selective hydrogenation of D-glucose to D-sorbitol over HY zeolite supported ruthenium nanoparticles catalysts. Catal Today. 2014;232:99–107.

    Article  CAS  Google Scholar 

  45. Mishra DK, Lee J-S, Chang JS, Hwang J-S. Liquid phase hydrogenation of D-glucose to D-sorbitol over the catalyst (Ru/NiO–TiO2) of ruthenium on a NiO-modified TiO2 support. Catal Today. 2012;185:104–8.

    Article  CAS  Google Scholar 

  46. Aho A, Roggan S, Simakova OA, Salmi T, Murzin DY. Structure sensitivity in catalytic hydrogenation of D-glucose over ruthenium. Catal Today. 2015;241:195–9.

    Article  CAS  Google Scholar 

  47. Lazaridis PA, Karakoulia S, Delimitis A, Comanc SM, Parvulescu VI, Triantafyllidis KS. D-glucose hydrogenation/hydrogenolysis reactions on noble metal(Ru, Pt)/activated carbon supported catalysts. Catal Today. 2015;257:281–90.

    Article  CAS  Google Scholar 

  48. Wang S, Wei W, Zhao Y, Li H, Li H. Ru–B amorphous alloy deposited on mesoporous silica nanospheres: an efficient catalyst for D-glucose hydrogenation to D-sorbitol. Catal Today. 2015;258:327–36.

    Article  CAS  Google Scholar 

  49. Santiso EE, George AM, Turner CH, Kostov MK, Gubbins KE, Buongiorno-Nardelli M, Sliwinska-Bartkowiak M. Adsorption and catalysis: The effect of confinement on chemical reactions. Appl Surf Sci. 2005;252:766–77.

    Article  CAS  Google Scholar 

  50. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater. 2007;6:507–11.

    Article  CAS  PubMed  Google Scholar 

  51. Dabbawala AA, Mishra DK, Hwang J-S. Selective hydrogenation of D-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catal Today. 2016;265:163–73.

    Article  CAS  Google Scholar 

  52. Doluda V, Grigorev M, Matveeva V, Sulman E, Sulman M, Lakina N, Molchanov V, Rebrov EV. Evaluation of D-glucose hydrogenation catalysts stability in different reactor systems. WSEAS Transact Biol Biomed. 2016;13:44–51.

    Google Scholar 

  53. Boyers GG, Flushing NY. Hydrogenation of mono- and disaccharides to polyols. US Patent 2,868,847 (1959).

    Google Scholar 

  54. Lepper H, Schütt H. Process for the continuous preparation of polyhydric alcohols. US Patent 4,520,211 (1985).

    Google Scholar 

  55. Déchamp N, Gamez A, Perrard A, Gallezot P. Kinetics of D-glucose hydrogenation in a trickle-bed reactor. Catal Today. 1995;24:29–34.

    Article  Google Scholar 

  56. Tukac V. D-glucose hydrogenation in a trickle-bed reactor. Collect Czechoslov Chem Commun. 1997;62:1243–8.

    Google Scholar 

  57. Arena BJ. Deactivation of ruthenium catalysts in continuous D-glucose hydrogenation. Appl Catal A General. 1992;87:219–29.

    Article  CAS  Google Scholar 

  58. Gallezot P, Nicolaus N, Flèche G, Fuertes P, Perrad A. D-glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J Catal. 1998;180:51–5.

    Article  CAS  Google Scholar 

  59. Aho A, Roggan S, Eränen K, Salmia T, Murzin DU. Continuous hydrogenation of D-glucose with ruthenium on carbon nanotube catalysts. Cat Sci Technol. 2015;5:953–9.

    Article  CAS  Google Scholar 

  60. Yamaguchi A, Sato O, Mimura N, Hirosaki Y, Kobayashi H, Fukuoka A, Shirai M. Direct production of sugar alcohols from wood chips using supported platinum catalysts in water. Catal Commun. 2014;54:22–6.

    Article  CAS  Google Scholar 

  61. Li J, Soares HSMP, Moulijn JA, Makkee M. Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media. Cat Sci Technol. 2013;3:1565–72.

    Article  CAS  Google Scholar 

  62. Almeida JMAR, Da Vià L, Carà D, Carvalho Y, Romano PN, Peña JAO, Smith L, Sousa-Aguiar EF, Lopez-Sanchez JA. Screening of mono- and bi-functional catalysts for the one-pot conversion of cellobiose into sorbitol. Catal Today. 2016; In press, corrected proof available.

    Google Scholar 

  63. Hartstra L, Bakker L, van Westen HA. Hydrogenation of carbohydrates. US Patent 2518235 (1950).

    Google Scholar 

  64. Jacobs P, Hinnekens H. Single-step catalytic process for the direct conversion of polysaccharides to polyhydric alcohols. EP Patent 0329923 (1989).

    Google Scholar 

  65. Kasehagen L. Hydrogenation of carbohydrates. US Patent 2,968,680 (1961).

    Google Scholar 

  66. Kruse WM, Wright LW. Polyhydric alcohol production using ruthenium zeolite catalyst. US Patent 3,963,788 (1976).

    Google Scholar 

  67. Van de Vyver S, Geboers J, Jacobs PA, Sels BF. Recent advances in the catalytic conversion of cellulose. ChemCatChem. 2011;3:82–94.

    Article  Google Scholar 

  68. Yabushita M, Kobayashi H, Fukuoka A. Catalytic transformation of cellulose into platform chemicals. Appl Catal B Environ. 2014;145:1–9.

    Article  CAS  Google Scholar 

  69. Li Y, Liao Y, Cao X, Wang T, Ma L, Long J, Liu Q, Xua Y. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose. Biomass Bioenergy. 2015;74:148–61.

    Article  CAS  Google Scholar 

  70. Balandin AA, Vasyunina NA, Barysheva GS, Chepigo SV, Dubinin MM. Letters to the editor. Bull Acad Sci USSR Div Chem Sci. 1957;6:403–4.

    Article  Google Scholar 

  71. Balandin AA, Vasyunina NA, Chepigo SV, Barysheva GS. Hydrolytic hydrogenation of cellulose. Dokl Akad Nauk SSSR. 1959;128:941–4.

    CAS  Google Scholar 

  72. Geboers J, Van de Vyver S, Carpentier K, Blochouse K, Jacobs P, Sels B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropolyacids and Ru on carbon. Chem Commun. 2010;46:3577–9.

    Article  CAS  Google Scholar 

  73. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chem. 2010;12:972–8.

    Article  CAS  Google Scholar 

  74. Fukuoka A, Dhepe PL. Catalytic conversion of cellulose into sugar alcohols. Angew Chem. 2006;118:5285–7.

    Article  Google Scholar 

  75. Dhepe PL, Fukuoka A. Cracking of cellulose over supported metal catalysts. Catal Surv Jpn. 2007;11:186–91.

    Article  CAS  Google Scholar 

  76. Jollet V, Chambon F, Rataboul F, Cabiac A, Pinel C, Guillon E, Essayem N. Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chem. 2009;11:2052–60.

    Article  CAS  Google Scholar 

  77. Han JW, Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun. 2012;19:115–8.

    Article  CAS  Google Scholar 

  78. Luo C, Wang S, Liu HC. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem. 2007;119:7780–3.

    Article  Google Scholar 

  79. Deng W, Tan X, Fang W, Zhang Q, Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium. Catal Lett. 2009;133:167–74.

    Article  CAS  Google Scholar 

  80. Ribeiro LS, Órfão JJM, Pereira MFR. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem. 2015;17:2973–80.

    Article  Google Scholar 

  81. Suzuki T, Nakagami J. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur J Pharm Biopharm. 1999;47:225–30.

    Article  CAS  PubMed  Google Scholar 

  82. Isik M, Sardon H, Mecerreyes D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci. 2014;15:11922–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ignatyev IA, Van Doorslaer C, Mertens PGN, Binnemans K, De Vos DE. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem. 2010;3:91–6.

    Article  CAS  PubMed  Google Scholar 

  84. Creighton HJ, Hales RA. Electrolytic process for reducing sugars. US Patent 2,458,895 (1949).

    Google Scholar 

  85. Hefti HR, Kolb W. Electrolytic reduction of sugars. US Patent 2,507,973 (1950).

    Google Scholar 

  86. Parl K, Pintauro PN, Baizer MM, Nobe K. Flow reactor studies of the paired electro-oxidation and electroreduction of D-glucose. J Electrochem Soc Electrochem Sci Technol. 1985;132:1850–5.

    Article  Google Scholar 

  87. Li H, Li W, Guo Z, Gu D, Cai S, Fujishima A. The paired electrochemical synthesis of gluconic acid and sorbitol. Collect Czechoslov Chem Commun. 1995;60:928–34.

    Article  CAS  Google Scholar 

  88. Silveira MM, Jonas R. The biotechnological production of sorbitol. Appl Microbiol Biotechnol. 2002;59:400–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sprenger GA. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett. 1996;145:301–7.

    Article  CAS  Google Scholar 

  90. Viikari L. Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl Microbiol Biotechnol. 1984;19:252–5.

    Article  CAS  Google Scholar 

  91. Barrow KD, Collins JG, Leight DA, Rogers PL, Warr RG. Sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol. 1984;20:225–32.

    Article  CAS  Google Scholar 

  92. Leigh D, Scopes RK, Rogers PL. A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol. 1984;20:413–5.

    Article  CAS  Google Scholar 

  93. Zachariou M, Scopes RK. D-glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol. 1986;167:863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Scopes RK, Rogers PL, Leigh DA. Method for the production of sorbitol and gluconate. US Patent 4,755,467 (1988).

    Google Scholar 

  95. Chun UH, Rogers PL. The simultaneous production of sorbitol from fructose and gluconic acid from D-glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol. 1988;29:19–24.

    Article  CAS  Google Scholar 

  96. Ichikawa Y, Kitamoto Y, Kato N, Mori N. Preparation of gluconic acid and sorbitol. European Patent Application 322,723 (1989).

    Google Scholar 

  97. Bringer-Meyer S, Sahm H. Process for obtaining sorbitol and gluconic acid by fermentation, and cell material suitable for this purpose. US Patent 5,017,485 (1991).

    Google Scholar 

  98. Rehr B, Wilhelm C, Sahm H. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol. 1991;35:144–8.

    Article  CAS  Google Scholar 

  99. Rehr B, Sahm H. Process for obtaining sorbitol and gluconic acid or gluconate. US Patent 5,102,795 (1992).

    Google Scholar 

  100. Rehr B, Sahm H. Process for obtaining sorbitol and gluconic acid or gluconate using Zymomonas mobilis. US Patent 5,190,869 (1993).

    Google Scholar 

  101. Jang KH, Jung SJ, Chang HS, Chun UH. Improvement of the process for sorbitol production with Zymomonas mobilis immobilized in κ-carrageenan. Process Biochem. 1996;31:485–92.

    Article  CAS  Google Scholar 

  102. Ferraz HC, Alves TLM, Borges CP. Coupling of an electrodialysis unit to a hollow fiber bioreactor for separation of gluconic acid from sorbitol produced by Zymomonas mobilis permeabilized cells. J Membr Sci. 2001;191:43–51.

    Article  CAS  Google Scholar 

  103. Wisbeck E, Silveira MM, Ninow J, Jonas R. Evaluation of the flocculent strain Zymomonas mobilis Z1–81 for the production of sorbitol and gluconic acid. J Basic Microbiol. 1997;6:445–9.

    Article  Google Scholar 

  104. Silveira MM, Wisbeck E, Lemmel C, Erzinger GS, Lopes da Costa JP, Bertasso M, Jonas R. Bioconversion of D-glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol. 1999;75:99–103.

    Article  CAS  PubMed  Google Scholar 

  105. Ro H, Kim H. Continuous production of gluconic acid and sorbitol from sucrose using invertase and an oxidoreductase of Zymomonas mobilis. Enzym Microb Technol. 1991;13:920–4.

    Article  CAS  Google Scholar 

  106. Kim DM, Kim HS. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and D-glucose using an oxidoreductase of Zymomonas mobilis and inulinase. Biotechnol Bioeng. 1992;39:336–42.

    Article  CAS  PubMed  Google Scholar 

  107. Cazetta ML, Celligoi MPC, Buzato JB, Scarmino IS, Da Silva RSF. Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process Biochem. 2005;40:747–51.

    Article  CAS  Google Scholar 

  108. An K, Hu F, Bao J. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid. Appl Biochem Biotechnol. 2013;171:2093–104.

    Article  CAS  PubMed  Google Scholar 

  109. Liu C, Dong H, Zhong J, Ryu DD, Bao J. Sorbitol production using recombinant Zymomonas mobilis strain. J Biotechnol. 2010;148:105–12.

    Article  CAS  PubMed  Google Scholar 

  110. Pedruzzi I, da Silva EAB, Rodrigues AE. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzym Microb Technol. 2011;49:183–91.

    Article  CAS  Google Scholar 

  111. Gollhofer D, Nidetzky B, Fürlinger M, Kulbe KD. Efficient protection of D-glucose-fructose oxidoreductase from Zymomonas mobilis against irreversible inactivation during its catalytic action. Enzym Microb Technol. 1995;17:235–40.

    Article  CAS  Google Scholar 

  112. Nidetzky B, Fürlinger M, Gollhofer D, Scopes RK, Haltrich D, Kulbe KD. Improved operational stability of cell-free D-glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membrane reactor. Biotechnol Bioeng. 1997;53:623–9.

    Article  CAS  PubMed  Google Scholar 

  113. Silva-Martinez M, Haltrich D, Novalic S, Kulbe KD, Nidetzky B. Simultaneous enzymatic synthesis of gluconic acid and sorbitol: continuous process development using D-glucose-fructose oxidoreductase from Zymomonas mobilis. Appl Biochem Biotechnol. 1998;70–72:863–8.

    Article  PubMed  Google Scholar 

  114. Tani Y, Vongsuvanlert V. Sorbitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. J Ferment Technol. 1987;65:405–11.

    Article  CAS  Google Scholar 

  115. Vongsuvanlert V, Tani Y. Characterization of D-sorbitol dehydrogenase involved in D-sorbitol production of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. Agric Biol Chem. 1988;52:419–26.

    CAS  Google Scholar 

  116. Duvnjak Z, Turcotte G, Duan ZD. Production of sorbitol and ethanol from Jerusalem artichokes by Saccharomyces cerevisiae ATCC 36859. Appl Microbiol Biotechnol. 1991;35:711–5.

    Article  CAS  Google Scholar 

  117. Nissen L, Perez-Martinez G, Yebra MJ. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett. 2005;249:177–83.

    Article  CAS  PubMed  Google Scholar 

  118. De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol. 2010;85:1915–22.

    Article  CAS  PubMed  Google Scholar 

  119. Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol. 2007;73:1864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Gorp K, Boerman E, Cavenaghi CV, Berben PH. Catalytic hydrogenation of fine chemicals: sorbitol production. 1999 52;349–61.

    Google Scholar 

  121. Puritech. Sorbitol/mannitol Separation. http://www.puritech.be/food-processing/sorbitol-mannitol (2016). Last accessed 15 July 2016.

  122. Ferraz HC, Borges CP, Alves TLM. Produção de sorbitol e ácido glicônico por células permeabilizadas e imobilizadas de Zymomonas mobilis com separação simultânea dos produtos por eletrodiálise. In: Proceedings of the 13th national symposium on fermentation. Terezópolis, Brazil; (2000)

    Google Scholar 

  123. Silveira MM, Lopes da Costa JP, Jonas R. Processo de produção e recuperação de sorbitol e ácido glucônico ou gluconato. Brazilian Patent PI 9.403.981-0 (1994).

    Google Scholar 

  124. Jiang B, Li Z-G, Dai J-Y, Zhang D-J, Xiu ZL. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system. Process Biochem. 2009;44:112–7.

    Article  CAS  Google Scholar 

  125. Fang Z. Method for the dissolving and rapid hydrolyzing of lignocellulose biomass, device thereof and use of the same. US Patent 9,243,303 (2016).

    Google Scholar 

  126. Cantero DA, Bermejo D, Cocero MJ. High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors. Bioresour Technol. 2013;135:697–703.

    Article  CAS  PubMed  Google Scholar 

  127. Ochoa-Gómez JR, García-Luis A, Fernández-Carretero FJ, Lorenzo-Ibarreta L, Prieto S. Method for manufacturing 2,3-butanediol. European Patent Application EP14198812 (2014).

    Google Scholar 

  128. Pletcher D, Li X, Wang S. A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production. Int J Hydrog Energy. 2012;37:7429–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Ochoa-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ochoa-Gómez, J.R., Roncal, T. (2017). Production of Sorbitol from Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_9

Download citation

Publish with us

Policies and ethics